Contact and 1-Quasiconformal Maps on Carnot Groups
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 787-811
Cet article a éte moissonné depuis la source Heldermann Verlag
This paper answers to some questions that remained open for some time in the community of mathematicians working on quasiconformal mapping theory in subriemannian geometry. The first result presented here is the characterisation of the rigidity of Carnot groups in the class of C2 contact maps, obtained by extending Tanaka theory from its classical domain of C∞ contact vector fields to the pseudogroup of local C2 contact mappings.
Classification :
30C65, 58D05, 22E25, 53C17
Mots-clés : Contact map, conformal map, quasiconformal map, subriemannian geometry
Mots-clés : Contact map, conformal map, quasiconformal map, subriemannian geometry
@article{JLT_2011_21_4_JLT_2011_21_4_a2,
author = {A. Ottazzi and B. Warhurst },
title = {Contact and {1-Quasiconformal} {Maps} on {Carnot} {Groups}},
journal = {Journal of Lie theory},
pages = {787--811},
year = {2011},
volume = {21},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a2/}
}
A. Ottazzi; B. Warhurst . Contact and 1-Quasiconformal Maps on Carnot Groups. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 787-811. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a2/