The Smoothness of Orbital Measures on Exceptional Lie Groups and Algebras
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 987-1007
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\g{{\frak g}} Suppose that $G$ is a compact, connected, simple, exceptional Lie group with Lie algebra $\g$. We determine the sharp minimal exponent $k_{0}$, which depends on $G$ or $\g$, such that the convolution of any $k_{0}$ continuous, $G$-invariant measures is absolutely continuous with respect to Haar measure. The exponent $k_{0}$ is also the minimal integer such that any $k_{0}$-fold product of conjugacy classes in $G$ or $k_{0}$-fold sum of adjoint orbits in $\g$ has non-empty interior. Unlike in the classical case, the answer can be less than the rank of $G$ or $\g$.\par We also establish a dichotomy for orbital measures $\mu$, supported on non-trivial conjugacy classes or adjoint orbits of minimal non-zero dimension: for each $k$, either $\mu^{k}\in L^{2}$ or $\mu^{k}$ is singular with respect to Haar measure.
Classification :
43A80, 22E30 58C3
Mots-clés : Compact Lie group, compact Lie algebra, orbital measure, orbit, conjugacy class
Mots-clés : Compact Lie group, compact Lie algebra, orbital measure, orbit, conjugacy class
@article{JLT_2011_21_4_JLT_2011_21_4_a11,
author = {K. Hare and P. Skoufranis },
title = {The {Smoothness} of {Orbital} {Measures} on {Exceptional} {Lie} {Groups} and {Algebras}},
journal = {Journal of Lie theory},
pages = {987--1007},
year = {2011},
volume = {21},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a11/}
}
TY - JOUR AU - K. Hare AU - P. Skoufranis TI - The Smoothness of Orbital Measures on Exceptional Lie Groups and Algebras JO - Journal of Lie theory PY - 2011 SP - 987 EP - 1007 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a11/ ID - JLT_2011_21_4_JLT_2011_21_4_a11 ER -
K. Hare; P. Skoufranis . The Smoothness of Orbital Measures on Exceptional Lie Groups and Algebras. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 987-1007. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a11/