Real forms of dual pairs g2×h in g of type E6, E7 and E8
Journal of Lie theory, Tome 21 (2011) no. 2, pp. 417-426
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\a{{\frak a}} \def\g{{\frak g}} \def\h{{\frak h}} Let $\g$ be a complex Lie algebra of type $E_6$, $E_7$ or $E_8$ and let $\g_2\times\h$ be a dual pair in $\g$. In this paper, we look for possible real forms of $\g_2\times\h$. It turns out that for each $n$ and for all real forms, say $\a_0\times\h_0$ of $\g_2\times\h$, there exists a real form $\g_0$ of $\g$ such that $\a_0\times\h_0$ embedds into $\g_0$. The full description is given in Theorem 3.1.
Classification :
17B05
Mots-clés : Dual pairs, real forms
Mots-clés : Dual pairs, real forms
@article{JLT_2011_21_2_JLT_2011_21_2_a6,
author = {D. Kovacevic },
title = {Real forms of dual pairs g\protect\textsubscript{2}{\texttimes}h in g of type {E\protect\textsubscript{6},} {E\protect\textsubscript{7}} and {E\protect\textsubscript{8}}},
journal = {Journal of Lie theory},
pages = {417--426},
year = {2011},
volume = {21},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a6/}
}
D. Kovacevic . Real forms of dual pairs g2×h in g of type E6, E7 and E8. Journal of Lie theory, Tome 21 (2011) no. 2, pp. 417-426. http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a6/