The Structure of Almost Connected Pro-Lie Groups
Journal of Lie theory, Tome 21 (2011) no. 2, pp. 347-383.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\R{\mathbb{R}} \def\Z{\mathbb{Z}} \def\Aut{\mathop{\rm Aut}\nolimits} \def\Inn{\mathop{\rm Inn}\nolimits} Recalling that a topological group $G$ is said to be almost connected if the quotient group $G/G_0$ is compact, where $G_0$ is the connected component of the identity, we prove that for an almost connected pro-Lie group $G$, there exists a compact zero-dimens\-ional, that is, profinite, subgroup $D$ of $G$ such that $G=G_0D$. Further for such a group $G$, there are sets $I$, $J$, a compact connected semisimple group $S$, and a compact connected abelian group $A$ such that $G$ and $\R^I\times(\Z/2\Z)^J\times S\times A$ are homeomorphic. En route to this powerful structure theorem it is shown that the compact open topology makes the automorphism group $\Aut\g$ of a semisimple pro-Lie algebra $\g$ a topological group in which the identity component $(\Aut\g)_0$ is exactly the group $\Inn\g$ of inner automorphisms. In this situation, Inn(G) has a totally disconnected semidirect complement $\Delta$ such that $\Aut\g=(\Inn\g)\Delta$ and $\Aut\g/\Inn\g\cong \Delta$ as topological groups. The group $\Inn\g$ is a product of a family of connected simple centerfree Lie groups.
Classification : 22A05, 22D05, 22E10, 22E65
Mots-clés : Pro-Lie group, almost connected, maximal compact subgroup, conjugacy of subgroups, automorphism groups
@article{JLT_2011_21_2_JLT_2011_21_2_a4,
     author = {K. H. Hofmann and S. A. Morris },
     title = {The {Structure} of {Almost} {Connected} {Pro-Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {347--383},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a4/}
}
TY  - JOUR
AU  - K. H. Hofmann
AU  - S. A. Morris 
TI  - The Structure of Almost Connected Pro-Lie Groups
JO  - Journal of Lie theory
PY  - 2011
SP  - 347
EP  - 383
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a4/
ID  - JLT_2011_21_2_JLT_2011_21_2_a4
ER  - 
%0 Journal Article
%A K. H. Hofmann
%A S. A. Morris 
%T The Structure of Almost Connected Pro-Lie Groups
%J Journal of Lie theory
%D 2011
%P 347-383
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a4/
%F JLT_2011_21_2_JLT_2011_21_2_a4
K. H. Hofmann; S. A. Morris . The Structure of Almost Connected Pro-Lie Groups. Journal of Lie theory, Tome 21 (2011) no. 2, pp. 347-383. http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a4/