Canonical Frames for Distributions of Odd Rank and Corank 2 with Maximal First Kronecker Index
Journal of Lie theory, Tome 21 (2011) no. 2, pp. 307-346.

Voir la notice de l'article provenant de la source Heldermann Verlag

We construct canonical frames and find all maximally symmetric models for a natural generic class of corank 2 distributions on manifolds of odd dimension greater or equal to 7. This class of distributions is characterized by the following two conditions: the pencil of 2-forms associated with the corresponding Pfaffian system has the maximal possible first Kronecker index and the Lie square of the subdistribution generated by the kernels of all these 2-forms is equal to the original distribution. In particular, we show that the unique, up to a local equivalence, maximally symmetric model in this class of distributions with given dimension of the ambient manifold exists if and only if the dimension of the ambient manifold is equal to 7, 9, 11, 15 or 8k - 3 for every natural number k. Besides, if the dimension of the ambient manifold is equal to 19, then there exist two maximally symmetric models, up to a local equivalence, distinguished by certain discrete invariant. For all other dimensions of ambient manifold there are families of maximally symmetric models, depending on continuous parameters. Our main tool is the so-called symplectification procedure having its origin in Optimal Control Theory. Our results can be seen as an extension of some classical results of Cartan's on rank 3 distributions in R5 to corank 2 distributions of higher odd rank.
Classification : 58A30, 58A17, 53A55, 35B06
Mots-clés : Nonholonomic distributions, Pfaffian systems, symplectification, canonical frames, abnormal extremals, pseudo-product structures, bi-graded nilpotent Lie algebras
@article{JLT_2011_21_2_JLT_2011_21_2_a3,
     author = {W. Krynski and I. Zelenko },
     title = {Canonical {Frames} for {Distributions} of {Odd} {Rank} and {Corank} 2 with {Maximal} {First} {Kronecker} {Index}},
     journal = {Journal of Lie theory},
     pages = {307--346},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a3/}
}
TY  - JOUR
AU  - W. Krynski
AU  - I. Zelenko 
TI  - Canonical Frames for Distributions of Odd Rank and Corank 2 with Maximal First Kronecker Index
JO  - Journal of Lie theory
PY  - 2011
SP  - 307
EP  - 346
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a3/
ID  - JLT_2011_21_2_JLT_2011_21_2_a3
ER  - 
%0 Journal Article
%A W. Krynski
%A I. Zelenko 
%T Canonical Frames for Distributions of Odd Rank and Corank 2 with Maximal First Kronecker Index
%J Journal of Lie theory
%D 2011
%P 307-346
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a3/
%F JLT_2011_21_2_JLT_2011_21_2_a3
W. Krynski; I. Zelenko . Canonical Frames for Distributions of Odd Rank and Corank 2 with Maximal First Kronecker Index. Journal of Lie theory, Tome 21 (2011) no. 2, pp. 307-346. http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a3/