Dirichlet Distribution and Orbital Measures
Journal of Lie theory, Tome 21 (2011) no. 1, pp. 189-203.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\C{{\Bbb C}} \def\F{{\Bbb F}} \def\R{{\Bbb R}} \def\HH{{\Bbb H}} The starting point of this paper is an observation by Okounkov concerning the projection of orbital measures for the action of the unitary group $U(n)$ on the space Herm$(n,\C)$ of $n\times n$ Hermitian matrices. The projection of such an orbital measure on the straight line generated by a rank one Hermitian matrix is a probability measure whose density is a spline function. More generally we consider the projection of orbital measures for the action of the group $U(n,\F)$ on the space Herm$(n,\F)$ for $\F=\R$, $\C$, $\HH$, and their relation with Dirichlet distributions.
Classification : 60B05, 65D07
Mots-clés : Dirichlet distribution, orbital measure, Markov-Krein correspondence, spline function, Jack polynomial
@article{JLT_2011_21_1_JLT_2011_21_1_a8,
     author = {F. Fourati },
     title = {Dirichlet {Distribution} and {Orbital} {Measures}},
     journal = {Journal of Lie theory},
     pages = {189--203},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a8/}
}
TY  - JOUR
AU  - F. Fourati 
TI  - Dirichlet Distribution and Orbital Measures
JO  - Journal of Lie theory
PY  - 2011
SP  - 189
EP  - 203
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a8/
ID  - JLT_2011_21_1_JLT_2011_21_1_a8
ER  - 
%0 Journal Article
%A F. Fourati 
%T Dirichlet Distribution and Orbital Measures
%J Journal of Lie theory
%D 2011
%P 189-203
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a8/
%F JLT_2011_21_1_JLT_2011_21_1_a8
F. Fourati . Dirichlet Distribution and Orbital Measures. Journal of Lie theory, Tome 21 (2011) no. 1, pp. 189-203. http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a8/