Dirichlet Distribution and Orbital Measures
Journal of Lie theory, Tome 21 (2011) no. 1, pp. 189-203
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\C{{\Bbb C}} \def\F{{\Bbb F}} \def\R{{\Bbb R}} \def\HH{{\Bbb H}} The starting point of this paper is an observation by Okounkov concerning the projection of orbital measures for the action of the unitary group $U(n)$ on the space Herm$(n,\C)$ of $n\times n$ Hermitian matrices. The projection of such an orbital measure on the straight line generated by a rank one Hermitian matrix is a probability measure whose density is a spline function. More generally we consider the projection of orbital measures for the action of the group $U(n,\F)$ on the space Herm$(n,\F)$ for $\F=\R$, $\C$, $\HH$, and their relation with Dirichlet distributions.
Classification :
60B05, 65D07
Mots-clés : Dirichlet distribution, orbital measure, Markov-Krein correspondence, spline function, Jack polynomial
Mots-clés : Dirichlet distribution, orbital measure, Markov-Krein correspondence, spline function, Jack polynomial
@article{JLT_2011_21_1_JLT_2011_21_1_a8,
author = {F. Fourati },
title = {Dirichlet {Distribution} and {Orbital} {Measures}},
journal = {Journal of Lie theory},
pages = {189--203},
year = {2011},
volume = {21},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a8/}
}
F. Fourati . Dirichlet Distribution and Orbital Measures. Journal of Lie theory, Tome 21 (2011) no. 1, pp. 189-203. http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a8/