Structure of the Local Area-Preserving Lie Algebra for the Klein Bottle
Journal of Lie theory, Tome 21 (2011) no. 1, pp. 101-122
Cet article a éte moissonné depuis la source Heldermann Verlag
We study an infinite-dimensional Lie algebra B, called local area-preserving algebra for the Klein bottle introduced by C. Pope and L. Romans [Class. Quantum Grav. 7 (1990) 79--109]. We show that B is a finitely generated simple Lie algebra with a unique (up to scalars) symmetric invariant bilinear form. The derivation algebra and the universal central extension of B are also determined.
Classification :
17B65, 17B68
Mots-clés : Lie algebra, Klein bottle, Invariant bilinear form, central extension, derivation
Mots-clés : Lie algebra, Klein bottle, Invariant bilinear form, central extension, derivation
@article{JLT_2011_21_1_JLT_2011_21_1_a4,
author = {C. Jiang and J. Jiang and Y. Pei },
title = {Structure of the {Local} {Area-Preserving} {Lie} {Algebra} for the {Klein} {Bottle}},
journal = {Journal of Lie theory},
pages = {101--122},
year = {2011},
volume = {21},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a4/}
}
TY - JOUR AU - C. Jiang AU - J. Jiang AU - Y. Pei TI - Structure of the Local Area-Preserving Lie Algebra for the Klein Bottle JO - Journal of Lie theory PY - 2011 SP - 101 EP - 122 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a4/ ID - JLT_2011_21_1_JLT_2011_21_1_a4 ER -
C. Jiang; J. Jiang; Y. Pei . Structure of the Local Area-Preserving Lie Algebra for the Klein Bottle. Journal of Lie theory, Tome 21 (2011) no. 1, pp. 101-122. http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a4/