Structure of the Local Area-Preserving Lie Algebra for the Klein Bottle
Journal of Lie theory, Tome 21 (2011) no. 1, pp. 101-122.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study an infinite-dimensional Lie algebra B, called local area-preserving algebra for the Klein bottle introduced by C. Pope and L. Romans [Class. Quantum Grav. 7 (1990) 79--109]. We show that B is a finitely generated simple Lie algebra with a unique (up to scalars) symmetric invariant bilinear form. The derivation algebra and the universal central extension of B are also determined.
Classification : 17B65, 17B68
Mots-clés : Lie algebra, Klein bottle, Invariant bilinear form, central extension, derivation
@article{JLT_2011_21_1_JLT_2011_21_1_a4,
     author = {C. Jiang and J. Jiang and Y. Pei },
     title = {Structure of the {Local} {Area-Preserving} {Lie} {Algebra} for the {Klein} {Bottle}},
     journal = {Journal of Lie theory},
     pages = {101--122},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a4/}
}
TY  - JOUR
AU  - C. Jiang
AU  - J. Jiang
AU  - Y. Pei 
TI  - Structure of the Local Area-Preserving Lie Algebra for the Klein Bottle
JO  - Journal of Lie theory
PY  - 2011
SP  - 101
EP  - 122
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a4/
ID  - JLT_2011_21_1_JLT_2011_21_1_a4
ER  - 
%0 Journal Article
%A C. Jiang
%A J. Jiang
%A Y. Pei 
%T Structure of the Local Area-Preserving Lie Algebra for the Klein Bottle
%J Journal of Lie theory
%D 2011
%P 101-122
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a4/
%F JLT_2011_21_1_JLT_2011_21_1_a4
C. Jiang; J. Jiang; Y. Pei . Structure of the Local Area-Preserving Lie Algebra for the Klein Bottle. Journal of Lie theory, Tome 21 (2011) no. 1, pp. 101-122. http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a4/