Sheets of Symmetric Lie Algebras and Slodowy Slices
Journal of Lie theory, Tome 21 (2011) no. 1, pp. 1-54
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\g{{\frak g}} \def\k{{\frak k}} \def\l{{\frak l}} \def\p{{\frak p}} \def\N{{\Bbb N}} Let $\theta$ be an involution of the finite dimensional reductive Lie algebra $\g$ and $\g=\k\oplus\p$ be the associated Cartan decomposition. Denote by $K\subset G$ the connected subgroup having $\k$ as Lie algebra. The $K$-module $\p$ is the union of the subsets $\p^{(m)}:=\{x \mid \dim K.x =m\}$, $m \in\N$, and the $K$-sheets of $(\g,\theta)$ are the irreducible components of the $\p^{(m)}$. The sheets can be, in turn, written as a union of so-called Jordan $K$-classes. We introduce conditions in order to describe the sheets and Jordan classes in terms of Slodowy slices. When $\g$ is of classical type, the $K$-sheets are shown to be smooth; if $\g=\g\l_N$ a complete description of sheets and Jordan classes is then obtained.
Classification :
14L30, 17B20, 22E46
Mots-clés : Semisimple Lie algebra, symmetric Lie algebra, sheet, Jordan class, Slodowy slice, nilpotent orbit, root system
Mots-clés : Semisimple Lie algebra, symmetric Lie algebra, sheet, Jordan class, Slodowy slice, nilpotent orbit, root system
@article{JLT_2011_21_1_JLT_2011_21_1_a0,
author = {M. Bulois },
title = {Sheets of {Symmetric} {Lie} {Algebras} and {Slodowy} {Slices}},
journal = {Journal of Lie theory},
pages = {1--54},
year = {2011},
volume = {21},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a0/}
}
M. Bulois . Sheets of Symmetric Lie Algebras and Slodowy Slices. Journal of Lie theory, Tome 21 (2011) no. 1, pp. 1-54. http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a0/