Sheets of Symmetric Lie Algebras and Slodowy Slices
Journal of Lie theory, Tome 21 (2011) no. 1, pp. 1-54.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\k{{\frak k}} \def\l{{\frak l}} \def\p{{\frak p}} \def\N{{\Bbb N}} Let $\theta$ be an involution of the finite dimensional reductive Lie algebra $\g$ and $\g=\k\oplus\p$ be the associated Cartan decomposition. Denote by $K\subset G$ the connected subgroup having $\k$ as Lie algebra. The $K$-module $\p$ is the union of the subsets $\p^{(m)}:=\{x \mid \dim K.x =m\}$, $m \in\N$, and the $K$-sheets of $(\g,\theta)$ are the irreducible components of the $\p^{(m)}$. The sheets can be, in turn, written as a union of so-called Jordan $K$-classes. We introduce conditions in order to describe the sheets and Jordan classes in terms of Slodowy slices. When $\g$ is of classical type, the $K$-sheets are shown to be smooth; if $\g=\g\l_N$ a complete description of sheets and Jordan classes is then obtained.
Classification : 14L30, 17B20, 22E46
Mots-clés : Semisimple Lie algebra, symmetric Lie algebra, sheet, Jordan class, Slodowy slice, nilpotent orbit, root system
@article{JLT_2011_21_1_JLT_2011_21_1_a0,
     author = {M. Bulois },
     title = {Sheets of {Symmetric} {Lie} {Algebras} and {Slodowy} {Slices}},
     journal = {Journal of Lie theory},
     pages = {1--54},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a0/}
}
TY  - JOUR
AU  - M. Bulois 
TI  - Sheets of Symmetric Lie Algebras and Slodowy Slices
JO  - Journal of Lie theory
PY  - 2011
SP  - 1
EP  - 54
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a0/
ID  - JLT_2011_21_1_JLT_2011_21_1_a0
ER  - 
%0 Journal Article
%A M. Bulois 
%T Sheets of Symmetric Lie Algebras and Slodowy Slices
%J Journal of Lie theory
%D 2011
%P 1-54
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a0/
%F JLT_2011_21_1_JLT_2011_21_1_a0
M. Bulois . Sheets of Symmetric Lie Algebras and Slodowy Slices. Journal of Lie theory, Tome 21 (2011) no. 1, pp. 1-54. http://geodesic.mathdoc.fr/item/JLT_2011_21_1_JLT_2011_21_1_a0/