The Component Group of the Automorphism Group of a Simple Lie Algebra and the Splitting of the Corresponding Short Exact Sequence
Journal of Lie theory, Tome 20 (2010) no. 4, pp. 709-737.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\C{{\Bbb C}} \def\K{{\Bbb K}} \def\R{{\Bbb R}} \def\Aut{\mathop{\rm Aut}\nolimits} \def\sdir#1{\hbox{$\mathrel\times{\hskip -4.6pt {\vrule height 4.7 pt depth .5 pt}}\hskip 2pt_{#1}$}} Let $\g$ be a simple Lie algebra of finite dimension over $\K \in \left\{\R,\C\right\}$ and $\Aut(\g)$ the finite-dimensional Lie group of its automorphisms. We will calculate the component group $\pi_0(\Aut(\g)) = \Aut(\g)/\Aut(\g)_0$ and the number of its conjugacy classes, and we will show that the corresponding short exact sequence $$ {\bf1}\to\Aut(\g)_0\to\Aut(\g)\to\pi_0(\Aut(\g))\to{\bf1} $$ is split or, equivalently, there is an isomorphism $\Aut(\g)\cong \Aut(\g)_0 \sdir{}\pi_0(\Aut(\g))$. Indeed, since $\Aut(\g)_0$ is open in $\Aut(\g)$, the quotient group $\pi_0(\Aut(\g))$ is discrete. Hence a section $\pi_0(\Aut(\g))\to\Aut(\g)$ is automatically continuous, giving rise to an isomorphism of Lie groups $\Aut(\g)\cong\Aut(\g)_0 \sdir{}\pi_0(\Aut(\g))$.
Classification : 17B20, 22E15
Mots-clés : Automorphism group, simple, semisimple, Lie algebras splitting, semidirect product
@article{JLT_2010_20_4_JLT_2010_20_4_a5,
     author = {H. G�ndogan },
     title = {The {Component} {Group} of the {Automorphism} {Group} of a {Simple} {Lie} {Algebra} and the {Splitting} of the {Corresponding} {Short} {Exact} {Sequence}},
     journal = {Journal of Lie theory},
     pages = {709--737},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a5/}
}
TY  - JOUR
AU  - H. G�ndogan 
TI  - The Component Group of the Automorphism Group of a Simple Lie Algebra and the Splitting of the Corresponding Short Exact Sequence
JO  - Journal of Lie theory
PY  - 2010
SP  - 709
EP  - 737
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a5/
ID  - JLT_2010_20_4_JLT_2010_20_4_a5
ER  - 
%0 Journal Article
%A H. G�ndogan 
%T The Component Group of the Automorphism Group of a Simple Lie Algebra and the Splitting of the Corresponding Short Exact Sequence
%J Journal of Lie theory
%D 2010
%P 709-737
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a5/
%F JLT_2010_20_4_JLT_2010_20_4_a5
H. G�ndogan . The Component Group of the Automorphism Group of a Simple Lie Algebra and the Splitting of the Corresponding Short Exact Sequence. Journal of Lie theory, Tome 20 (2010) no. 4, pp. 709-737. http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a5/