Classification of 8-Dimensional Compact Projective Planes
Journal of Lie theory, Tome 20 (2010) no. 4, pp. 689-708.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $\cal P$ be a compact, $8$-dimensional projective plane and $\Delta$ a connected closed subgroup of Aut$\,{\cal P}$. If $\Delta$ is semi-simple or has a normal torus subgroup, and if $\dim\Delta > 13$, then $\cal P$ is a Hughes plane.
Classification : 51H10
Mots-clés : Compact projective planes, Lie collineation group, Hughes plane, Baer subplane
@article{JLT_2010_20_4_JLT_2010_20_4_a4,
     author = {H. R. Salzmann },
     title = {Classification of {8-Dimensional} {Compact} {Projective} {Planes}},
     journal = {Journal of Lie theory},
     pages = {689--708},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a4/}
}
TY  - JOUR
AU  - H. R. Salzmann 
TI  - Classification of 8-Dimensional Compact Projective Planes
JO  - Journal of Lie theory
PY  - 2010
SP  - 689
EP  - 708
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a4/
ID  - JLT_2010_20_4_JLT_2010_20_4_a4
ER  - 
%0 Journal Article
%A H. R. Salzmann 
%T Classification of 8-Dimensional Compact Projective Planes
%J Journal of Lie theory
%D 2010
%P 689-708
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a4/
%F JLT_2010_20_4_JLT_2010_20_4_a4
H. R. Salzmann . Classification of 8-Dimensional Compact Projective Planes. Journal of Lie theory, Tome 20 (2010) no. 4, pp. 689-708. http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a4/