Classification of 8-Dimensional Compact Projective Planes
Journal of Lie theory, Tome 20 (2010) no. 4, pp. 689-708
Cet article a éte moissonné depuis la source Heldermann Verlag
Let $\cal P$ be a compact, $8$-dimensional projective plane and $\Delta$ a connected closed subgroup of Aut$\,{\cal P}$. If $\Delta$ is semi-simple or has a normal torus subgroup, and if $\dim\Delta > 13$, then $\cal P$ is a Hughes plane.
Classification :
51H10
Mots-clés : Compact projective planes, Lie collineation group, Hughes plane, Baer subplane
Mots-clés : Compact projective planes, Lie collineation group, Hughes plane, Baer subplane
@article{JLT_2010_20_4_JLT_2010_20_4_a4,
author = {H. R. Salzmann },
title = {Classification of {8-Dimensional} {Compact} {Projective} {Planes}},
journal = {Journal of Lie theory},
pages = {689--708},
year = {2010},
volume = {20},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a4/}
}
H. R. Salzmann . Classification of 8-Dimensional Compact Projective Planes. Journal of Lie theory, Tome 20 (2010) no. 4, pp. 689-708. http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a4/