Principal Basis in Cartan Subalgebra
Journal of Lie theory, Tome 20 (2010) no. 4, pp. 673-687
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\g{{\frak g}} \def\h{{\frak h}} Let $\g$ be a simple complex Lie algebra and $\h$ a Cartan subalgebra. In this article we explain how to obtain the principal basis of $\h$ starting form a set of generators $\{p_1, \cdots ,p_r\}$,$r={\rm rank}(\g)$, of the invariants polynomials $S(\g^*)\g$. For each invariant polynomial $p$, we define a $G$-equivariant map $Dp$ form $\g$ to $\g$. We show that the Gram-Schmidt orthogonalization of the elements $\{Dp_1(\rho^\vee), \cdots Dp_r(\rho^\vee)\}$ gives the principal basis of $\h$. Similarly the orthogonalization of the elements $\{Dp_1(\rho), \cdots, Dp_r(\rho)\}$ produces the principal basis of the Cartan subalgebra of $\g^\vee$, the Langlands dual of $\g$.
Classification :
17B
Mots-clés : Lie algebra, Cartan subalgebra, principal basis, Langlands dual
Mots-clés : Lie algebra, Cartan subalgebra, principal basis, Langlands dual
@article{JLT_2010_20_4_JLT_2010_20_4_a3,
author = {R. P. Rohr },
title = {Principal {Basis} in {Cartan} {Subalgebra}},
journal = {Journal of Lie theory},
pages = {673--687},
year = {2010},
volume = {20},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a3/}
}
R. P. Rohr . Principal Basis in Cartan Subalgebra. Journal of Lie theory, Tome 20 (2010) no. 4, pp. 673-687. http://geodesic.mathdoc.fr/item/JLT_2010_20_4_JLT_2010_20_4_a3/