Bounded Simple (g, sl(2))-Modules for rk g = 2
Journal of Lie theory, Tome 20 (2010) no. 3, pp. 581-615.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\k{{\frak k}} \def\sL{\mathop{\rm sl}\nolimits} \def\sp{\mathop{\rm sp}\nolimits} This paper is a continuation of our work {\it On bounded generalized Harish-Chandra modules}, preprint (2009), math.jacobs-university.de/penkov, in which we prove some general results about simple $(\g, \k)$-modules with bounded $\k$-multiplicities (or bounded simple $(\g, \k)$-modules). In the absence of a classification of bounded simple $(\g, \k)$-modules in general, it is important to understand some special cases as best as possible. Here we consider the case $\k=\sL(2)$. It turns out that in order for an infinite-dimensional bounded simple $(\g, \sL(2))$-module to exist, $\g$ must have rank 2, and, up to conjugation, there are five possible embeddings $\sL(2)\rightarrow \g$ which yield infinite-dimensional bounded simple $(\g, \sL(2))$-modules. \par Our main result is a detailed description of the bounded simple $(\g, \sL(2))$-modules in all five cases. When $\g \simeq \sL(2)\oplus \sL(2)$ we reproduce in modern terms some classical results from the 1940's. When $\g \simeq \sL(3)$ and $\sL(2)$ is a principal subalgebra, bounded simple $(\sL(3), \sL(2))$-modules are Harish-Chandra modules and our result singles out all Harish-Chandra modules with bounded $\sL(2)$-multiplicities. A case where the result is entirely new is the case of a principal $\sL(2)$-subalgebra of $\g=\sp(4)$.
Classification : 17B10, 22E46
Mots-clés : Harish-Chandra modules, bounded sl(2)-multiplicities, sl(2)-characters
@article{JLT_2010_20_3_JLT_2010_20_3_a7,
     author = {I. Penkov and V. Serganova },
     title = {Bounded {Simple} (g, {sl(2))-Modules} for rk g = 2},
     journal = {Journal of Lie theory},
     pages = {581--615},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a7/}
}
TY  - JOUR
AU  - I. Penkov
AU  - V. Serganova 
TI  - Bounded Simple (g, sl(2))-Modules for rk g = 2
JO  - Journal of Lie theory
PY  - 2010
SP  - 581
EP  - 615
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a7/
ID  - JLT_2010_20_3_JLT_2010_20_3_a7
ER  - 
%0 Journal Article
%A I. Penkov
%A V. Serganova 
%T Bounded Simple (g, sl(2))-Modules for rk g = 2
%J Journal of Lie theory
%D 2010
%P 581-615
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a7/
%F JLT_2010_20_3_JLT_2010_20_3_a7
I. Penkov; V. Serganova . Bounded Simple (g, sl(2))-Modules for rk g = 2. Journal of Lie theory, Tome 20 (2010) no. 3, pp. 581-615. http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a7/