Globalizing Locally Compact Local Groups
Journal of Lie theory, Tome 20 (2010) no. 3, pp. 519-524.

Voir la notice de l'article provenant de la source Heldermann Verlag

Every locally compact local group is locally isomorphic to a topological group.
Classification : 22D05, 22E05
Mots-clés : Locally compact local groups, globalizable local groups
@article{JLT_2010_20_3_JLT_2010_20_3_a4,
     author = {L. van den Dries and I. Goldbring },
     title = {Globalizing {Locally} {Compact} {Local} {Groups}},
     journal = {Journal of Lie theory},
     pages = {519--524},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a4/}
}
TY  - JOUR
AU  - L. van den Dries
AU  - I. Goldbring 
TI  - Globalizing Locally Compact Local Groups
JO  - Journal of Lie theory
PY  - 2010
SP  - 519
EP  - 524
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a4/
ID  - JLT_2010_20_3_JLT_2010_20_3_a4
ER  - 
%0 Journal Article
%A L. van den Dries
%A I. Goldbring 
%T Globalizing Locally Compact Local Groups
%J Journal of Lie theory
%D 2010
%P 519-524
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a4/
%F JLT_2010_20_3_JLT_2010_20_3_a4
L. van den Dries; I. Goldbring . Globalizing Locally Compact Local Groups. Journal of Lie theory, Tome 20 (2010) no. 3, pp. 519-524. http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a4/