Local and Global Aspects of Lie Superposition Theorem
Journal of Lie theory, Tome 20 (2010) no. 3, pp. 483-517.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give the global conditions for an ordinary differential equation to admit a superposition law of solutions in the classical sense. This completes the well-known Lie superposition theorem. We introduce rigorous notions of pretransitive Lie group action and Lie-Vessiot systems. We prove that an ordinary differential equation admit a superposition law if and only if its enveloping algebra is spanned by fundamental fields of a pretransitive Lie group action. We discuss the relationship of superposition laws with differential Galois theory and review the classical result of Lie.
Classification : 34M15, 35C05, 34M35, 34M45
Mots-clés : Non-linear superposition laws, Lie-Vessiot systems, Lie-Scheffers theorem, Galois theory of differential equations
@article{JLT_2010_20_3_JLT_2010_20_3_a3,
     author = {D. Bl�zquez-Sanz and J. J. Morales-Ruiz },
     title = {Local and {Global} {Aspects} of {Lie} {Superposition} {Theorem}},
     journal = {Journal of Lie theory},
     pages = {483--517},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a3/}
}
TY  - JOUR
AU  - D. Bl�zquez-Sanz
AU  - J. J. Morales-Ruiz 
TI  - Local and Global Aspects of Lie Superposition Theorem
JO  - Journal of Lie theory
PY  - 2010
SP  - 483
EP  - 517
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a3/
ID  - JLT_2010_20_3_JLT_2010_20_3_a3
ER  - 
%0 Journal Article
%A D. Bl�zquez-Sanz
%A J. J. Morales-Ruiz 
%T Local and Global Aspects of Lie Superposition Theorem
%J Journal of Lie theory
%D 2010
%P 483-517
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a3/
%F JLT_2010_20_3_JLT_2010_20_3_a3
D. Bl�zquez-Sanz; J. J. Morales-Ruiz . Local and Global Aspects of Lie Superposition Theorem. Journal of Lie theory, Tome 20 (2010) no. 3, pp. 483-517. http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a3/