On a Lie Group Characterization of Quasi-Local Symmetries of Nonlinear Evolution Equations
Journal of Lie theory, Tome 20 (2010) no. 2, pp. 375-392
Cet article a éte moissonné depuis la source Heldermann Verlag
We develop an efficient algebraic approach to classifying nonlinear evolution equations in one spatial dimension that admit non-local transformation groups (quasi-local symmetries), i.e., groups involving integrals of the dependent variable. It applies to evolution equations invariant under Lie point symmetries leaving the temporal variable invariant. We construct inequivalent realizations of two- and three-dimensional Lie algebras leading to evolution equations admitting quasi-local symmetries. Finally, we generalize the approach in question for the case of an arbitrary system of evolution equations in two independent variables.
Classification :
35Q80, 58Z05, 58J70
Mots-clés : Quasi-local symmetry, nonlinear evolution equation, Lie algebra
Mots-clés : Quasi-local symmetry, nonlinear evolution equation, Lie algebra
@article{JLT_2010_20_2_JLT_2010_20_2_a7,
author = {R. Zhdanov },
title = {On a {Lie} {Group} {Characterization} of {Quasi-Local} {Symmetries} of {Nonlinear} {Evolution} {Equations}},
journal = {Journal of Lie theory},
pages = {375--392},
year = {2010},
volume = {20},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a7/}
}
TY - JOUR AU - R. Zhdanov TI - On a Lie Group Characterization of Quasi-Local Symmetries of Nonlinear Evolution Equations JO - Journal of Lie theory PY - 2010 SP - 375 EP - 392 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a7/ ID - JLT_2010_20_2_JLT_2010_20_2_a7 ER -
R. Zhdanov . On a Lie Group Characterization of Quasi-Local Symmetries of Nonlinear Evolution Equations. Journal of Lie theory, Tome 20 (2010) no. 2, pp. 375-392. http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a7/