Locally Precompact Groups: (Local) Realcompactness and Connectedness
Journal of Lie theory, Tome 20 (2010) no. 2, pp. 347-374.

Voir la notice de l'article provenant de la source Heldermann Verlag

A theorem of A. Weil asserts that a topological group embeds as a (dense) subgroup of a locally compact group if and only if it contains a non-empty precompact open set; such groups are called "locally precompact. Within the class of locally precompact groups, the authors classify those groups with the following topological properties:
Classification : 22A05, 54H11, 22B05, 22C05
Mots-clés : Precompact group, precompactly generated group, locally precompact group, Weil completion, Dieudonn� complete group, locally Dieudonn� complete group, realcompact group, locally realcompact group, connected group, locally connected group, omega-balanced g
@article{JLT_2010_20_2_JLT_2010_20_2_a6,
     author = {W. W. Comfort and G. Luk�cs },
     title = {Locally {Precompact} {Groups:} {(Local)} {Realcompactness} and {Connectedness}},
     journal = {Journal of Lie theory},
     pages = {347--374},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a6/}
}
TY  - JOUR
AU  - W. W. Comfort
AU  - G. Luk�cs 
TI  - Locally Precompact Groups: (Local) Realcompactness and Connectedness
JO  - Journal of Lie theory
PY  - 2010
SP  - 347
EP  - 374
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a6/
ID  - JLT_2010_20_2_JLT_2010_20_2_a6
ER  - 
%0 Journal Article
%A W. W. Comfort
%A G. Luk�cs 
%T Locally Precompact Groups: (Local) Realcompactness and Connectedness
%J Journal of Lie theory
%D 2010
%P 347-374
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a6/
%F JLT_2010_20_2_JLT_2010_20_2_a6
W. W. Comfort; G. Luk�cs . Locally Precompact Groups: (Local) Realcompactness and Connectedness. Journal of Lie theory, Tome 20 (2010) no. 2, pp. 347-374. http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a6/