Scalar Invariants on Special Spaces of Equiaffine Connections
Journal of Lie theory, Tome 20 (2010) no. 2, pp. 295-309
Voir la notice de l'article provenant de la source Heldermann Verlag
The only basic scalar invariant in the general equiaffine geometry is the determinant of the Ricci tensor. For special equiaffine geometries, more scalar invariants can emerge. In this paper, we first investigate invariants of torsion-less connections with constant Christoffel symbols in R2. For this aim, we calculate invariants of the corresponding representation of the group SL(2, R) on the space R6 of Christoffel symbols. As a result, we find three bi-quadratic polynomials forming a Hilbert basis of this representation. An interesting phenomenon (rational involutive maps of higher degree) appears during the calculation. We also study representation of SL(2, R) on the 9-dimensional space of special equiaffine connections in R3 and corresponding invariants.
Classification :
53A55, 53B05, 16R50
Mots-clés : Equiaffine connection, representation of a Lie group, invariant function, Hilbert basis of invariants, involutive rational mapping
Mots-clés : Equiaffine connection, representation of a Lie group, invariant function, Hilbert basis of invariants, involutive rational mapping
@article{JLT_2010_20_2_JLT_2010_20_2_a3,
author = {Z. Dusek },
title = {Scalar {Invariants} on {Special} {Spaces} of {Equiaffine} {Connections}},
journal = {Journal of Lie theory},
pages = {295--309},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2010},
url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a3/}
}
Z. Dusek . Scalar Invariants on Special Spaces of Equiaffine Connections. Journal of Lie theory, Tome 20 (2010) no. 2, pp. 295-309. http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a3/