Homogeneous Toric Varieties
Journal of Lie theory, Tome 20 (2010) no. 2, pp. 283-293
Cet article a éte moissonné depuis la source Heldermann Verlag
A description of transitive actions of a semisimple algebraic group G on toric varieties is obtained. Every toric variety admitting such an action lies between a product of punctured affine spaces and a product of projective spaces. The result is based on the Cox realization of a toric variety as a quotient space of an open subset of a vector space V by a quasitorus action and on investigation of the G-module structure of V.
Classification :
14L30, 14M17, 14M25
Mots-clés : Toric variety, homogeneous space, Cox construction
Mots-clés : Toric variety, homogeneous space, Cox construction
@article{JLT_2010_20_2_JLT_2010_20_2_a2,
author = {I. V. Arzhantsev and S. A. Gaifullin },
title = {Homogeneous {Toric} {Varieties}},
journal = {Journal of Lie theory},
pages = {283--293},
year = {2010},
volume = {20},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a2/}
}
I. V. Arzhantsev; S. A. Gaifullin . Homogeneous Toric Varieties. Journal of Lie theory, Tome 20 (2010) no. 2, pp. 283-293. http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a2/