Homogeneous Toric Varieties
Journal of Lie theory, Tome 20 (2010) no. 2, pp. 283-293.

Voir la notice de l'article provenant de la source Heldermann Verlag

A description of transitive actions of a semisimple algebraic group G on toric varieties is obtained. Every toric variety admitting such an action lies between a product of punctured affine spaces and a product of projective spaces. The result is based on the Cox realization of a toric variety as a quotient space of an open subset of a vector space V by a quasitorus action and on investigation of the G-module structure of V.
Classification : 14L30, 14M17, 14M25
Mots-clés : Toric variety, homogeneous space, Cox construction
@article{JLT_2010_20_2_JLT_2010_20_2_a2,
     author = {I. V. Arzhantsev and S. A. Gaifullin },
     title = {Homogeneous {Toric} {Varieties}},
     journal = {Journal of Lie theory},
     pages = {283--293},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a2/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
AU  - S. A. Gaifullin 
TI  - Homogeneous Toric Varieties
JO  - Journal of Lie theory
PY  - 2010
SP  - 283
EP  - 293
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a2/
ID  - JLT_2010_20_2_JLT_2010_20_2_a2
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%A S. A. Gaifullin 
%T Homogeneous Toric Varieties
%J Journal of Lie theory
%D 2010
%P 283-293
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a2/
%F JLT_2010_20_2_JLT_2010_20_2_a2
I. V. Arzhantsev; S. A. Gaifullin . Homogeneous Toric Varieties. Journal of Lie theory, Tome 20 (2010) no. 2, pp. 283-293. http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a2/