Classifying Associative Quadratic Algebras of Characteristic not Two as Lie Algebras
Journal of Lie theory, Tome 19 (2009) no. 3, pp. 543-555
Cet article a éte moissonné depuis la source Heldermann Verlag
We present an alternative to existing classifications [see L. Br�cker, Kinematische R�ume, Geom. Dedicata 1 (1973) 241--268; H. Karzel, Kinematic spaces, Symposia Mathematica 11 (1973) 413--439] of those quadratic algebras (in the sense of Osborn) which are associative. The alternative consists in studying them as Lie algebras. This generalizes work of J. F. Plebanski and M. Przanowski [Generalizations of the quaternion algebra and Lie algebras, J. Math. Phys. 29 (1988) 529--535], where only algebras over the real and the complex numbers are considered, to algebras over arbitrary fields of characteristic not two; at the same time, considerable simplifications are obtained. The method is not suitable, however, for characteristic two.
Classification :
6U99, 17B20, 17B30, 17B60
Mots-clés : Associative quadratic algebra, Lie algebra, nilpotent Lie algebra, solvable Lie algebra, quaternion skew field, classification
Mots-clés : Associative quadratic algebra, Lie algebra, nilpotent Lie algebra, solvable Lie algebra, quaternion skew field, classification
@article{JLT_2009_19_3_JLT_2009_19_3_a7,
author = {H. H�hl and M. Weller },
title = {Classifying {Associative} {Quadratic} {Algebras} of {Characteristic} not {Two} as {Lie} {Algebras}},
journal = {Journal of Lie theory},
pages = {543--555},
year = {2009},
volume = {19},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a7/}
}
TY - JOUR AU - H. H�hl AU - M. Weller TI - Classifying Associative Quadratic Algebras of Characteristic not Two as Lie Algebras JO - Journal of Lie theory PY - 2009 SP - 543 EP - 555 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a7/ ID - JLT_2009_19_3_JLT_2009_19_3_a7 ER -
H. H�hl; M. Weller . Classifying Associative Quadratic Algebras of Characteristic not Two as Lie Algebras. Journal of Lie theory, Tome 19 (2009) no. 3, pp. 543-555. http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a7/