The Lattice Subgroups Conjecture
Journal of Lie theory, Tome 19 (2009) no. 3, pp. 527-53.

Voir la notice de l'article provenant de la source Heldermann Verlag

It has been conjectured by L. Corwin and F. P. Greenleaf that if Γ is a lattice subgroup of a connected, simply connected nilpotent Lie group G then log(Γ) is a Lie ring. In this note we show that this conjecture holds.
Classification : 22E40
Mots-clés : Nilpotent Lie group, discrete uniform subgroup, lattice subgroup, rational structure
@article{JLT_2009_19_3_JLT_2009_19_3_a4,
     author = {A. Ghorbel and H. Hamrouni },
     title = {The {Lattice} {Subgroups} {Conjecture}},
     journal = {Journal of Lie theory},
     pages = {527--53},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a4/}
}
TY  - JOUR
AU  - A. Ghorbel
AU  - H. Hamrouni 
TI  - The Lattice Subgroups Conjecture
JO  - Journal of Lie theory
PY  - 2009
SP  - 527
EP  - 53
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a4/
ID  - JLT_2009_19_3_JLT_2009_19_3_a4
ER  - 
%0 Journal Article
%A A. Ghorbel
%A H. Hamrouni 
%T The Lattice Subgroups Conjecture
%J Journal of Lie theory
%D 2009
%P 527-53
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a4/
%F JLT_2009_19_3_JLT_2009_19_3_a4
A. Ghorbel; H. Hamrouni . The Lattice Subgroups Conjecture. Journal of Lie theory, Tome 19 (2009) no. 3, pp. 527-53. http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a4/