The Lattice Subgroups Conjecture
Journal of Lie theory, Tome 19 (2009) no. 3, pp. 527-53
Cet article a éte moissonné depuis la source Heldermann Verlag
It has been conjectured by L. Corwin and F. P. Greenleaf that if Γ is a lattice subgroup of a connected, simply connected nilpotent Lie group G then log(Γ) is a Lie ring. In this note we show that this conjecture holds.
Classification :
22E40
Mots-clés : Nilpotent Lie group, discrete uniform subgroup, lattice subgroup, rational structure
Mots-clés : Nilpotent Lie group, discrete uniform subgroup, lattice subgroup, rational structure
@article{JLT_2009_19_3_JLT_2009_19_3_a4,
author = {A. Ghorbel and H. Hamrouni },
title = {The {Lattice} {Subgroups} {Conjecture}},
journal = {Journal of Lie theory},
pages = {527--53},
year = {2009},
volume = {19},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a4/}
}
A. Ghorbel; H. Hamrouni . The Lattice Subgroups Conjecture. Journal of Lie theory, Tome 19 (2009) no. 3, pp. 527-53. http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a4/