Contraction of Discrete Series via Berezin Quantization
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 291-31
Voir la notice de l'article provenant de la source Heldermann Verlag
We establish and study a contraction of the holomorphic discrete series representations of a non-compact semi-simple Lie group to the unitary irreducible representations of a Heisenberg group by means of Berezin quantization.
Classification :
22E46, 81R30, 46E22
Mots-clés : Contraction of representations, holomorphic discrete series, semisimple Lie group, reproducing kernel Hilbert space, coherent states, Berezin quantization, Berezin symbols
Mots-clés : Contraction of representations, holomorphic discrete series, semisimple Lie group, reproducing kernel Hilbert space, coherent states, Berezin quantization, Berezin symbols
@article{JLT_2009_19_2_JLT_2009_19_2_a7,
author = {B. Cahen },
title = {Contraction of {Discrete} {Series} via {Berezin} {Quantization}},
journal = {Journal of Lie theory},
pages = {291--31},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a7/}
}
B. Cahen . Contraction of Discrete Series via Berezin Quantization. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 291-31. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a7/