Smooth and Weak Synthesis of the Anti-Diagonal in Fourier Algebras of Lie Groups
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 275-29.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $G$ be a Lie group of dimension $n$, and let $A(G)$ be the Fourier algebra of $G$. We show that the anti-diagonal ${\check\Delta}_G = \{(g,g^{-1})\in G\times G \mid g\in G\}$ is both a set of local smooth synthesis and a set of local weak synthesis of degree at most $[{n\over2}]+1$ for $A(G\times G)$. We achieve this by using the concept of the cone property of J. Ludwig and L. Turowska [Growth and smooth spectral synthesis in the Fourier algebras of Lie groups, Studia Math. 176 (2006) 139--158]. For compact $G$, we give an alternative approach to demonstrate the preceding results by applying the ideas developed by B. E. Forrest, E. Samei and N. Spronk [Convolutions on compact groups and Fourier algebras of coset spaces, Studia Math. to appear; arXiv:0705.4277]. We also present similar results for sets of the form $HK$, where both $H$ and $K$ are subgroups of $G\times G\times G\times G$ of diagonal forms. Our results very much depend on both the geometric and the algebraic structure of these sets.
Classification : 43A30, 43A45, 22E15, 43A80
Mots-clés : Locally compact groups, Lie groups, Fourier algebras, smooth synthesis, weak synthesis
@article{JLT_2009_19_2_JLT_2009_19_2_a6,
     author = {B. D. Park and E. Samei },
     title = {Smooth and {Weak} {Synthesis} of the {Anti-Diagonal} in {Fourier} {Algebras} of {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {275--29},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a6/}
}
TY  - JOUR
AU  - B. D. Park
AU  - E. Samei 
TI  - Smooth and Weak Synthesis of the Anti-Diagonal in Fourier Algebras of Lie Groups
JO  - Journal of Lie theory
PY  - 2009
SP  - 275
EP  - 29
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a6/
ID  - JLT_2009_19_2_JLT_2009_19_2_a6
ER  - 
%0 Journal Article
%A B. D. Park
%A E. Samei 
%T Smooth and Weak Synthesis of the Anti-Diagonal in Fourier Algebras of Lie Groups
%J Journal of Lie theory
%D 2009
%P 275-29
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a6/
%F JLT_2009_19_2_JLT_2009_19_2_a6
B. D. Park; E. Samei . Smooth and Weak Synthesis of the Anti-Diagonal in Fourier Algebras of Lie Groups. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 275-29. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a6/