Invariant Semisimple CR Structures on the Compact Lie Groups SU(n) and SO(p,R), 5 ≤ p ≤ 7
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 267-274
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $G_{0}$ be a compact real Lie group of dimension $N$ and denote by $\g_{0}$ its Lie algebra. Recently J.-Y. Charbonnel and the first author [Classification des structures CR invariantes pour les groupes de Lie compacts, Journal of Lie Theory 14 (2004) 165--198] studied $G_{0}$-invariant {\it CR} structures on $G_{0}$. Such a structure is defined by the fiber of the identity element of $G_{0}$ which is a Lie subalgebra $\h$ of the complexification $\g$ of $\g_{0}$, having trivial intersection with $\g_{0}$. If the dimension of the {\it CR} structure is maximal, that is $\left[N\over2\right]$, then Charbonnel and the first author showed that $\h$ is a solvable Lie algebra. In this note, we are interested in $G_{0}$-invariant {\it CR} structures on $G_{0}$ which are defined by a semisimple Lie subalgebra and of maximal dimension. We distinguish two types of these {\it CR} structures which we shall call {\it CRSS} structure of type I and of type II. In the case of the group SU$(n)$, with $n\geq 3$, we show that there exists always a {\it CRSS} structure of type I, while in the case of SO$(p,\R)$, with $5\leq p\leq 7$, we show that a {\it CRSS} structure of type II exists. We obtain from these structures for each of these groups an almost global {\it CR} embedding into a finite-dimensional complex vector space.
Classification :
22E99, 32V40, 57S15
Mots-clés : Compact Lie group, Cauchy-Riemann Structure, CR-embedding
Mots-clés : Compact Lie group, Cauchy-Riemann Structure, CR-embedding
@article{JLT_2009_19_2_JLT_2009_19_2_a5,
author = {H. Ouna�es-Khalgui and R. W. T. Yu },
title = {Invariant {Semisimple} {CR} {Structures} on the {Compact} {Lie} {Groups} {SU(n)} and {SO(p,R),} 5 \ensuremath{\leq} p \ensuremath{\leq} 7},
journal = {Journal of Lie theory},
pages = {267--274},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a5/}
}
TY - JOUR AU - H. Ouna�es-Khalgui AU - R. W. T. Yu TI - Invariant Semisimple CR Structures on the Compact Lie Groups SU(n) and SO(p,R), 5 ≤ p ≤ 7 JO - Journal of Lie theory PY - 2009 SP - 267 EP - 274 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a5/ ID - JLT_2009_19_2_JLT_2009_19_2_a5 ER -
%0 Journal Article %A H. Ouna�es-Khalgui %A R. W. T. Yu %T Invariant Semisimple CR Structures on the Compact Lie Groups SU(n) and SO(p,R), 5 ≤ p ≤ 7 %J Journal of Lie theory %D 2009 %P 267-274 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a5/ %F JLT_2009_19_2_JLT_2009_19_2_a5
H. Ouna�es-Khalgui; R. W. T. Yu . Invariant Semisimple CR Structures on the Compact Lie Groups SU(n) and SO(p,R), 5 ≤ p ≤ 7. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 267-274. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a5/