Invariant Semisimple CR Structures on the Compact Lie Groups SU(n) and SO(p,R), 5 ≤ p ≤ 7
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 267-274.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $G_{0}$ be a compact real Lie group of dimension $N$ and denote by $\g_{0}$ its Lie algebra. Recently J.-Y. Charbonnel and the first author [Classification des structures CR invariantes pour les groupes de Lie compacts, Journal of Lie Theory 14 (2004) 165--198] studied $G_{0}$-invariant {\it CR} structures on $G_{0}$. Such a structure is defined by the fiber of the identity element of $G_{0}$ which is a Lie subalgebra $\h$ of the complexification $\g$ of $\g_{0}$, having trivial intersection with $\g_{0}$. If the dimension of the {\it CR} structure is maximal, that is $\left[N\over2\right]$, then Charbonnel and the first author showed that $\h$ is a solvable Lie algebra. In this note, we are interested in $G_{0}$-invariant {\it CR} structures on $G_{0}$ which are defined by a semisimple Lie subalgebra and of maximal dimension. We distinguish two types of these {\it CR} structures which we shall call {\it CRSS} structure of type I and of type II. In the case of the group SU$(n)$, with $n\geq 3$, we show that there exists always a {\it CRSS} structure of type I, while in the case of SO$(p,\R)$, with $5\leq p\leq 7$, we show that a {\it CRSS} structure of type II exists. We obtain from these structures for each of these groups an almost global {\it CR} embedding into a finite-dimensional complex vector space.
Classification : 22E99, 32V40, 57S15
Mots-clés : Compact Lie group, Cauchy-Riemann Structure, CR-embedding
@article{JLT_2009_19_2_JLT_2009_19_2_a5,
     author = {H. Ouna�es-Khalgui and R. W. T. Yu },
     title = {Invariant {Semisimple} {CR} {Structures} on the {Compact} {Lie} {Groups} {SU(n)} and {SO(p,R),} 5 \ensuremath{\leq} p \ensuremath{\leq} 7},
     journal = {Journal of Lie theory},
     pages = {267--274},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a5/}
}
TY  - JOUR
AU  - H. Ouna�es-Khalgui
AU  - R. W. T. Yu 
TI  - Invariant Semisimple CR Structures on the Compact Lie Groups SU(n) and SO(p,R), 5 ≤ p ≤ 7
JO  - Journal of Lie theory
PY  - 2009
SP  - 267
EP  - 274
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a5/
ID  - JLT_2009_19_2_JLT_2009_19_2_a5
ER  - 
%0 Journal Article
%A H. Ouna�es-Khalgui
%A R. W. T. Yu 
%T Invariant Semisimple CR Structures on the Compact Lie Groups SU(n) and SO(p,R), 5 ≤ p ≤ 7
%J Journal of Lie theory
%D 2009
%P 267-274
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a5/
%F JLT_2009_19_2_JLT_2009_19_2_a5
H. Ouna�es-Khalgui; R. W. T. Yu . Invariant Semisimple CR Structures on the Compact Lie Groups SU(n) and SO(p,R), 5 ≤ p ≤ 7. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 267-274. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a5/