Central Extensions of Coverings of Symplectomorphism Groups
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 237-249
Voir la notice de l'article provenant de la source Heldermann Verlag
Each even dimensional submanifold of a symplectic manifold defines a Lie algebra 2-cocycle on the Lie algebra of symplectic vector fields. We study its integrability to the group of symplectic diffeomorphisms. When the submanifold is symplectic, we describe a coadjoint orbit of the corresponding extension.
Classification :
58B20
Mots-clés : Coadjoint orbit, central extension
Mots-clés : Coadjoint orbit, central extension
@article{JLT_2009_19_2_JLT_2009_19_2_a3,
author = {C. Vizman },
title = {Central {Extensions} of {Coverings} of {Symplectomorphism} {Groups}},
journal = {Journal of Lie theory},
pages = {237--249},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a3/}
}
C. Vizman . Central Extensions of Coverings of Symplectomorphism Groups. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 237-249. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a3/