Central Extensions of Coverings of Symplectomorphism Groups
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 237-249.

Voir la notice de l'article provenant de la source Heldermann Verlag

Each even dimensional submanifold of a symplectic manifold defines a Lie algebra 2-cocycle on the Lie algebra of symplectic vector fields. We study its integrability to the group of symplectic diffeomorphisms. When the submanifold is symplectic, we describe a coadjoint orbit of the corresponding extension.
Classification : 58B20
Mots-clés : Coadjoint orbit, central extension
@article{JLT_2009_19_2_JLT_2009_19_2_a3,
     author = {C. Vizman },
     title = {Central {Extensions} of {Coverings} of {Symplectomorphism} {Groups}},
     journal = {Journal of Lie theory},
     pages = {237--249},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a3/}
}
TY  - JOUR
AU  - C. Vizman 
TI  - Central Extensions of Coverings of Symplectomorphism Groups
JO  - Journal of Lie theory
PY  - 2009
SP  - 237
EP  - 249
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a3/
ID  - JLT_2009_19_2_JLT_2009_19_2_a3
ER  - 
%0 Journal Article
%A C. Vizman 
%T Central Extensions of Coverings of Symplectomorphism Groups
%J Journal of Lie theory
%D 2009
%P 237-249
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a3/
%F JLT_2009_19_2_JLT_2009_19_2_a3
C. Vizman . Central Extensions of Coverings of Symplectomorphism Groups. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 237-249. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a3/