Nonabelian Cohomology of Compact Lie Groups
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 231-236
Voir la notice de l'article provenant de la source Heldermann Verlag
Given a Lie group $G$ with finitely many components and a compact Lie group $A$ which acts on $G$ by automorphisms, we prove that there always exists an $A$-invariant maximal compact subgroup $K$ of $G$, and that for every such $K$, the natural map $H^1(A,K)\rightarrow H^1(A,G)$ is bijective. This generalizes a classical result of Serre and a recent result of the first and third named authors of the current paper.
Classification :
20J06, 22E15, 57S15
Mots-clés : Nonabelian cohomology, compact Lie group, maximal compact subgroup
Mots-clés : Nonabelian cohomology, compact Lie group, maximal compact subgroup
@article{JLT_2009_19_2_JLT_2009_19_2_a2,
author = {J. An and M. Liu and Z. Wang },
title = {Nonabelian {Cohomology} of {Compact} {Lie} {Groups}},
journal = {Journal of Lie theory},
pages = {231--236},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a2/}
}
J. An; M. Liu; Z. Wang . Nonabelian Cohomology of Compact Lie Groups. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 231-236. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a2/