Geometric Structures on Lie Groups with Flat Bi-Invariant Metric
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 423-437
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\R{{\Bbb R}} \def\e{{\varepsilon}} \def\Id{\mathop{\rm Id}\nolimits} Let $L\subset V=\R^{k,l}$ be a maximally isotropic subspace. It is shown that any simply connected Lie group with a bi-invariant flat pseudo-Riemannian metric of signature $(k,l)$ is 2-step nilpotent and is defined by an element $\eta \in \Lambda^3L\subset \Lambda^3V$. If $\eta$ is of type $(3,0)+(0,3)$ with respect to a skew-symmetric endomorphism $J$ with $J^2=\e\Id$, then the Lie group ${\cal L}(\eta)$ is endowed with a left-invariant nearly K\"ahler structure if $\e =-1$ and with a left-invariant nearly para-K\"ahler structure if $\e =+1$. This construction exhausts all complete simply connected flat nearly (para-)K\"ahler manifolds. If $\eta \neq 0$ has rational coefficients with respect to some basis, then ${\cal L}(\eta)$ admits a lattice $\Gamma$, and the quotient $\Gamma\setminus {\cal L}(\eta)$ is a compact inhomogeneous nearly (para-)K\"ahler manifold. The first non-trivial example occurs in six dimensions.
Classification :
53C50, 53C15
Mots-clés : Flat Lie-groups, bi-invariant metrics, nearly para-Kaehler manifolds, flat almost para-Hermitian manifolds, almost para-complex structures
Mots-clés : Flat Lie-groups, bi-invariant metrics, nearly para-Kaehler manifolds, flat almost para-Hermitian manifolds, almost para-complex structures
@article{JLT_2009_19_2_JLT_2009_19_2_a14,
author = {V. Cort�s and L. Sch�fer },
title = {Geometric {Structures} on {Lie} {Groups} with {Flat} {Bi-Invariant} {Metric}},
journal = {Journal of Lie theory},
pages = {423--437},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a14/}
}
TY - JOUR AU - V. Cort�s AU - L. Sch�fer TI - Geometric Structures on Lie Groups with Flat Bi-Invariant Metric JO - Journal of Lie theory PY - 2009 SP - 423 EP - 437 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a14/ ID - JLT_2009_19_2_JLT_2009_19_2_a14 ER -
V. Cort�s; L. Sch�fer . Geometric Structures on Lie Groups with Flat Bi-Invariant Metric. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 423-437. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a14/