Hom-Algebras and Homology
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 409-421
Voir la notice de l'article provenant de la source Heldermann Verlag
Classes of G-Hom-associative algebras are constructed as deformations of G-associative algebras along algebra endomorphisms. As special cases, we obtain Hom-associative and Hom-Lie algebras as deformations of associative and Lie algebras, respectively, along algebra endomorphisms. Chevalley-Eilenberg type homology for Hom-Lie algebras are also constructed.
Classification :
17A30, 17B55, 17B68
Mots-clés : G-Hom-associative algebra, Hom-associative algebra, Hom-Lie algebra, Chevalley-Eilenberg homology
Mots-clés : G-Hom-associative algebra, Hom-associative algebra, Hom-Lie algebra, Chevalley-Eilenberg homology
@article{JLT_2009_19_2_JLT_2009_19_2_a13,
author = {D. Yau },
title = {Hom-Algebras and {Homology}},
journal = {Journal of Lie theory},
pages = {409--421},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a13/}
}
D. Yau . Hom-Algebras and Homology. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 409-421. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a13/