Initial Logarithmic Lie Algebras of Hypersurface Singularities
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 209-221.

Voir la notice de l'article provenant de la source Heldermann Verlag

We introduce a Lie algebra of initial terms of logarithmic vector fields along a hypersurface singularity. We show that the completely reducible part of its linear projection lifts formally to a linear Lie algebra of logarithmic vector fields. For quasihomogeneous singularities, we prove convergence of this linearization. We relate our construction to the work of Hauser and M�ller on Levi subgroups of automorphism groups of singularities, which proves convergence even for algebraic singularities.
Classification : 32S65, 17d66, 17d20
Mots-clés : Hypersurface singularity, logarithmic vector field, linear free divisor
@article{JLT_2009_19_2_JLT_2009_19_2_a0,
     author = {M. Granger and M. Schulze },
     title = {Initial {Logarithmic} {Lie} {Algebras} of {Hypersurface} {Singularities}},
     journal = {Journal of Lie theory},
     pages = {209--221},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a0/}
}
TY  - JOUR
AU  - M. Granger
AU  - M. Schulze 
TI  - Initial Logarithmic Lie Algebras of Hypersurface Singularities
JO  - Journal of Lie theory
PY  - 2009
SP  - 209
EP  - 221
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a0/
ID  - JLT_2009_19_2_JLT_2009_19_2_a0
ER  - 
%0 Journal Article
%A M. Granger
%A M. Schulze 
%T Initial Logarithmic Lie Algebras of Hypersurface Singularities
%J Journal of Lie theory
%D 2009
%P 209-221
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a0/
%F JLT_2009_19_2_JLT_2009_19_2_a0
M. Granger; M. Schulze . Initial Logarithmic Lie Algebras of Hypersurface Singularities. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 209-221. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a0/