Initial Logarithmic Lie Algebras of Hypersurface Singularities
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 209-221
Cet article a éte moissonné depuis la source Heldermann Verlag
We introduce a Lie algebra of initial terms of logarithmic vector fields along a hypersurface singularity. We show that the completely reducible part of its linear projection lifts formally to a linear Lie algebra of logarithmic vector fields. For quasihomogeneous singularities, we prove convergence of this linearization. We relate our construction to the work of Hauser and Müller on Levi subgroups of automorphism groups of singularities, which proves convergence even for algebraic singularities.
Classification :
32S65, 17d66, 17d20
Mots-clés : Hypersurface singularity, logarithmic vector field, linear free divisor
Mots-clés : Hypersurface singularity, logarithmic vector field, linear free divisor
@article{JLT_2009_19_2_JLT_2009_19_2_a0,
author = {M. Granger and M. Schulze},
title = {Initial {Logarithmic} {Lie} {Algebras} of {Hypersurface} {Singularities}},
journal = {Journal of Lie theory},
pages = {209--221},
year = {2009},
volume = {19},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a0/}
}
M. Granger; M. Schulze. Initial Logarithmic Lie Algebras of Hypersurface Singularities. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 209-221. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a0/