Initial Logarithmic Lie Algebras of Hypersurface Singularities
Journal of Lie theory, Tome 19 (2009) no. 2, pp. 209-221
Voir la notice de l'article provenant de la source Heldermann Verlag
We introduce a Lie algebra of initial terms of logarithmic vector fields along a hypersurface singularity. We show that the completely reducible part of its linear projection lifts formally to a linear Lie algebra of logarithmic vector fields. For quasihomogeneous singularities, we prove convergence of this linearization. We relate our construction to the work of Hauser and M�ller on Levi subgroups of automorphism groups of singularities, which proves convergence even for algebraic singularities.
Classification :
32S65, 17d66, 17d20
Mots-clés : Hypersurface singularity, logarithmic vector field, linear free divisor
Mots-clés : Hypersurface singularity, logarithmic vector field, linear free divisor
@article{JLT_2009_19_2_JLT_2009_19_2_a0,
author = {M. Granger and M. Schulze },
title = {Initial {Logarithmic} {Lie} {Algebras} of {Hypersurface} {Singularities}},
journal = {Journal of Lie theory},
pages = {209--221},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a0/}
}
TY - JOUR AU - M. Granger AU - M. Schulze TI - Initial Logarithmic Lie Algebras of Hypersurface Singularities JO - Journal of Lie theory PY - 2009 SP - 209 EP - 221 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a0/ ID - JLT_2009_19_2_JLT_2009_19_2_a0 ER -
M. Granger; M. Schulze . Initial Logarithmic Lie Algebras of Hypersurface Singularities. Journal of Lie theory, Tome 19 (2009) no. 2, pp. 209-221. http://geodesic.mathdoc.fr/item/JLT_2009_19_2_JLT_2009_19_2_a0/