Families of Equivariant Differential Operators and Anti-de Sitter Spaces
Journal of Lie theory, Tome 19 (2009) no. 1, pp. 149-183.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove the existence and uniqueness of a sequence of differential intertwining operators for principal series representations, which are realized on boundaries of anti-de Sitter spaces. Algebraically, these operators correspond to homomorphisms of generalized Verma modules. We relate these families to the asymptotics of eigenfunctions on anti-de Sitter spaces.
Classification : 58J50, 22E30, 22E47, 43A85, 53A30
Mots-clés : Anti-de Sitter space, spectral geometry, scattering theory, intertwining operators, Verma modules, conformal differential geometry
@article{JLT_2009_19_1_JLT_2009_19_1_a6,
     author = {P. B�cklund },
     title = {Families of {Equivariant} {Differential} {Operators} and {Anti-de} {Sitter} {Spaces}},
     journal = {Journal of Lie theory},
     pages = {149--183},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_1_JLT_2009_19_1_a6/}
}
TY  - JOUR
AU  - P. B�cklund 
TI  - Families of Equivariant Differential Operators and Anti-de Sitter Spaces
JO  - Journal of Lie theory
PY  - 2009
SP  - 149
EP  - 183
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2009_19_1_JLT_2009_19_1_a6/
ID  - JLT_2009_19_1_JLT_2009_19_1_a6
ER  - 
%0 Journal Article
%A P. B�cklund 
%T Families of Equivariant Differential Operators and Anti-de Sitter Spaces
%J Journal of Lie theory
%D 2009
%P 149-183
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2009_19_1_JLT_2009_19_1_a6/
%F JLT_2009_19_1_JLT_2009_19_1_a6
P. B�cklund . Families of Equivariant Differential Operators and Anti-de Sitter Spaces. Journal of Lie theory, Tome 19 (2009) no. 1, pp. 149-183. http://geodesic.mathdoc.fr/item/JLT_2009_19_1_JLT_2009_19_1_a6/