Families of Equivariant Differential Operators and Anti-de Sitter Spaces
Journal of Lie theory, Tome 19 (2009) no. 1, pp. 149-183
Voir la notice de l'article provenant de la source Heldermann Verlag
We prove the existence and uniqueness of a sequence of differential intertwining operators for principal series representations, which are realized on boundaries of anti-de Sitter spaces. Algebraically, these operators correspond to homomorphisms of generalized Verma modules. We relate these families to the asymptotics of eigenfunctions on anti-de Sitter spaces.
Classification :
58J50, 22E30, 22E47, 43A85, 53A30
Mots-clés : Anti-de Sitter space, spectral geometry, scattering theory, intertwining operators, Verma modules, conformal differential geometry
Mots-clés : Anti-de Sitter space, spectral geometry, scattering theory, intertwining operators, Verma modules, conformal differential geometry
@article{JLT_2009_19_1_JLT_2009_19_1_a6,
author = {P. B�cklund },
title = {Families of {Equivariant} {Differential} {Operators} and {Anti-de} {Sitter} {Spaces}},
journal = {Journal of Lie theory},
pages = {149--183},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_1_JLT_2009_19_1_a6/}
}
P. B�cklund . Families of Equivariant Differential Operators and Anti-de Sitter Spaces. Journal of Lie theory, Tome 19 (2009) no. 1, pp. 149-183. http://geodesic.mathdoc.fr/item/JLT_2009_19_1_JLT_2009_19_1_a6/