Comparison of Lattice Filtrations and Moy-Prasad Filtrations for Classical Groups
Journal of Lie theory, Tome 19 (2009) no. 1, pp. 29-54.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\R{{\Bbb R}} Let $F_\circ$ be a non-Archimedean local field of characteristic not $2$. Let $G$ be a classical group over $F_\circ$ which is not a general linear group, i.e. a symplectic, orthogonal or unitary group over $F_\circ$ (possibly with a skew-field involved). Let $x$ be a point in the building of $G$. In this article, we prove that the lattice filtration $(\g_{x,r})_{r\in\R}$ of $\g={\rm Lie}(G)$ attached to $x$ by Broussous and Stevens, coincides with the filtration defined by Moy and Prasad.
Classification : 20G25, 11E57
Mots-clés : Local field, division algebra, classical group, building, lattice filtration, Moy-Prasad filtration, unramified descent
@article{JLT_2009_19_1_JLT_2009_19_1_a1,
     author = {B. Lemaire },
     title = {Comparison of {Lattice} {Filtrations} and {Moy-Prasad} {Filtrations} for {Classical} {Groups}},
     journal = {Journal of Lie theory},
     pages = {29--54},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_1_JLT_2009_19_1_a1/}
}
TY  - JOUR
AU  - B. Lemaire 
TI  - Comparison of Lattice Filtrations and Moy-Prasad Filtrations for Classical Groups
JO  - Journal of Lie theory
PY  - 2009
SP  - 29
EP  - 54
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2009_19_1_JLT_2009_19_1_a1/
ID  - JLT_2009_19_1_JLT_2009_19_1_a1
ER  - 
%0 Journal Article
%A B. Lemaire 
%T Comparison of Lattice Filtrations and Moy-Prasad Filtrations for Classical Groups
%J Journal of Lie theory
%D 2009
%P 29-54
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2009_19_1_JLT_2009_19_1_a1/
%F JLT_2009_19_1_JLT_2009_19_1_a1
B. Lemaire . Comparison of Lattice Filtrations and Moy-Prasad Filtrations for Classical Groups. Journal of Lie theory, Tome 19 (2009) no. 1, pp. 29-54. http://geodesic.mathdoc.fr/item/JLT_2009_19_1_JLT_2009_19_1_a1/