A Counterexample in the Dimension Theory of Homogeneous Spaces of Locally Compact Groups
Journal of Lie theory, Tome 18 (2008) no. 4, pp. 915-917
Voir la notice de l'article provenant de la source Heldermann Verlag
We construct a locally compact group $G$ and a closed subgroup $H$ such that such that the quotient space $G/H$ is connected and has weight $w(G/H)=2^{\aleph_0}$ but fails to contain a cube $\I^{w(G/H)}$ of the same weight. This proves as incorrect an assertion made in Theorem 4.2 of K. H. Hofmann and S. A. Morris: Transitive actions of compact groups and topological dimension, J. of Algebra {\boldface 234} (2000), 454--479.
Classification :
22D05
Mots-clés : Homogeneous spaces of locally compact groups, Tychonoff cube, dimension
Mots-clés : Homogeneous spaces of locally compact groups, Tychonoff cube, dimension
@article{JLT_2008_18_4_JLT_2008_18_4_a9,
author = {A. A. George Michael },
title = {A {Counterexample} in the {Dimension} {Theory} of {Homogeneous} {Spaces} of {Locally} {Compact} {Groups}},
journal = {Journal of Lie theory},
pages = {915--917},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a9/}
}
TY - JOUR AU - A. A. George Michael TI - A Counterexample in the Dimension Theory of Homogeneous Spaces of Locally Compact Groups JO - Journal of Lie theory PY - 2008 SP - 915 EP - 917 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a9/ ID - JLT_2008_18_4_JLT_2008_18_4_a9 ER -
%0 Journal Article %A A. A. George Michael %T A Counterexample in the Dimension Theory of Homogeneous Spaces of Locally Compact Groups %J Journal of Lie theory %D 2008 %P 915-917 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a9/ %F JLT_2008_18_4_JLT_2008_18_4_a9
A. A. George Michael . A Counterexample in the Dimension Theory of Homogeneous Spaces of Locally Compact Groups. Journal of Lie theory, Tome 18 (2008) no. 4, pp. 915-917. http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a9/