The Constants of Cowling and Haagerup
Journal of Lie theory, Tome 18 (2008) no. 3, pp. 627-644
Cet article a éte moissonné depuis la source Heldermann Verlag
We give a simpler proof of the main theorem of M. Cowling and U. Haagerup ["Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one", Invent. Math. 96 (1989) 507--549], which reads as follows. Let $G$ be a connected real Lie group of real rank $1$ with finite centre. If $G$ is locally isomorphic to SO$_0(1,n)$ or SU$(1,n)$, then $\Lambda_G = 1$. If $G$ is locally isomorphic to Sp$(1,n)$, then $\Lambda_G = 2n-1$, while if $G$ is the exceptional rank one group $F_{4(-20)}$, then $\Lambda_G = 21$.
Classification :
43A30, 22D25, 43A62, 43A90, 43A22
Mots-clés : Fourier algebra, weak amenability, Gelfand pair, hypergroup
Mots-clés : Fourier algebra, weak amenability, Gelfand pair, hypergroup
@article{JLT_2008_18_3_JLT_2008_18_3_a9,
author = {V. Muruganandam},
title = {The {Constants} of {Cowling} and {Haagerup}},
journal = {Journal of Lie theory},
pages = {627--644},
year = {2008},
volume = {18},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a9/}
}
V. Muruganandam. The Constants of Cowling and Haagerup. Journal of Lie theory, Tome 18 (2008) no. 3, pp. 627-644. http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a9/