The Constants of Cowling and Haagerup
Journal of Lie theory, Tome 18 (2008) no. 3, pp. 627-644.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give a simpler proof of the main theorem of M. Cowling and U. Haagerup ["Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one", Invent. Math. 96 (1989) 507--549], which reads as follows. Let $G$ be a connected real Lie group of real rank $1$ with finite centre. If $G$ is locally isomorphic to SO$_0(1,n)$ or SU$(1,n)$, then $\Lambda_G = 1$. If $G$ is locally isomorphic to Sp$(1,n)$, then $\Lambda_G = 2n-1$, while if $G$ is the exceptional rank one group $F_{4(-20)}$, then $\Lambda_G = 21$.
Classification : 43A30, 22D25, 43A62, 43A90, 43A22
Mots-clés : Fourier algebra, weak amenability, Gelfand pair, hypergroup
@article{JLT_2008_18_3_JLT_2008_18_3_a9,
     author = {V. Muruganandam },
     title = {The {Constants} of {Cowling} and {Haagerup}},
     journal = {Journal of Lie theory},
     pages = {627--644},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a9/}
}
TY  - JOUR
AU  - V. Muruganandam 
TI  - The Constants of Cowling and Haagerup
JO  - Journal of Lie theory
PY  - 2008
SP  - 627
EP  - 644
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a9/
ID  - JLT_2008_18_3_JLT_2008_18_3_a9
ER  - 
%0 Journal Article
%A V. Muruganandam 
%T The Constants of Cowling and Haagerup
%J Journal of Lie theory
%D 2008
%P 627-644
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a9/
%F JLT_2008_18_3_JLT_2008_18_3_a9
V. Muruganandam . The Constants of Cowling and Haagerup. Journal of Lie theory, Tome 18 (2008) no. 3, pp. 627-644. http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a9/