Solution Non Universelle pour le Probl�me KV-78
Journal of Lie theory, Tome 18 (2008) no. 3, pp. 617-626.

Voir la notice de l'article provenant de la source Heldermann Verlag

In 1978, M. Kashiwara and M. Vergne conjectured some property on the Campbell-Hausdorff series in such way that a trace formula is satisfied. They proposed an explicit solution in the case of solvable Lie algebras. In this note, we prove that this {\it solvable solution} is not universal. Our method is based on computer calculation. Furthermore our programs prove up to degree 16, Drinfeld's Lie algebra ${\frak grt}_1$ coincides with the Lie algebra $\widehat{{\frak kv}_2}$ defined in A. Alekseev and C. Torossian: The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv: 0802.4300.
Classification : 17B01, 22E60, 68-04
Mots-clés : Free Lie algebra, Campbell-Hausdorff formula
@article{JLT_2008_18_3_JLT_2008_18_3_a8,
     author = {L. Albert and P. Harinck and C. Torossian },
     title = {Solution {Non} {Universelle} pour le {Probl�me} {KV-78}},
     journal = {Journal of Lie theory},
     pages = {617--626},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a8/}
}
TY  - JOUR
AU  - L. Albert
AU  - P. Harinck
AU  - C. Torossian 
TI  - Solution Non Universelle pour le Probl�me KV-78
JO  - Journal of Lie theory
PY  - 2008
SP  - 617
EP  - 626
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a8/
ID  - JLT_2008_18_3_JLT_2008_18_3_a8
ER  - 
%0 Journal Article
%A L. Albert
%A P. Harinck
%A C. Torossian 
%T Solution Non Universelle pour le Probl�me KV-78
%J Journal of Lie theory
%D 2008
%P 617-626
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a8/
%F JLT_2008_18_3_JLT_2008_18_3_a8
L. Albert; P. Harinck; C. Torossian . Solution Non Universelle pour le Probl�me KV-78. Journal of Lie theory, Tome 18 (2008) no. 3, pp. 617-626. http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a8/