C-Supplemented Subalgebras of Lie Algebras
Journal of Lie theory, Tome 18 (2008) no. 3, pp. 717-724
Voir la notice de l'article provenant de la source Heldermann Verlag
A subalgebra $B$ of a Lie algebra $L$ is c-{\it supplemented} in $L$ if there is a subalgebra $C$ of $L$ with $L = B + C$ and $B \cap C \leq B_L$, where $B_L$ is the core of $B$ in $L$. This is analogous to the corresponding concept of a c-supplemented subgroup in a finite group. We say that $L$ is c-{\it supplemented} if every subalgebra of $L$ is c-supplemented in $L$. We give here a complete characterisation of c-supplemented Lie algebras over a general field.
Classification :
17B05, 17B20, 17B30, 17B50
Mots-clés : Lie algebras, c-supplemented subalgebras, completely factorisable algebras, Frattini ideal, subalgebras of codimension one
Mots-clés : Lie algebras, c-supplemented subalgebras, completely factorisable algebras, Frattini ideal, subalgebras of codimension one
@article{JLT_2008_18_3_JLT_2008_18_3_a13,
author = {D. A. Towers },
title = {C-Supplemented {Subalgebras} of {Lie} {Algebras}},
journal = {Journal of Lie theory},
pages = {717--724},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a13/}
}
D. A. Towers . C-Supplemented Subalgebras of Lie Algebras. Journal of Lie theory, Tome 18 (2008) no. 3, pp. 717-724. http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a13/