Right Ideals in Non-Associative Universal Enveloping Algebras of Lie Triple Systems
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 375-382.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove that the only proper right ideal of the universal enveloping algebra of a finite-dimensional central simple Lie triple system over a field of characteristic zero is its augmentation ideal. This provides new series of infinite-dimensional simple non-associative algebras strongly connected with Hopf algebras and geometry.
Classification : 17A40
Mots-clés : Lie triple systems, Sabinin algebras, universal enveloping algebras, nonassociative bialgebras
@article{JLT_2008_18_2_JLT_2008_18_2_a7,
     author = {J. M. P�rez-Izquierdo },
     title = {Right {Ideals} in {Non-Associative} {Universal} {Enveloping} {Algebras} of {Lie} {Triple} {Systems}},
     journal = {Journal of Lie theory},
     pages = {375--382},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a7/}
}
TY  - JOUR
AU  - J. M. P�rez-Izquierdo 
TI  - Right Ideals in Non-Associative Universal Enveloping Algebras of Lie Triple Systems
JO  - Journal of Lie theory
PY  - 2008
SP  - 375
EP  - 382
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a7/
ID  - JLT_2008_18_2_JLT_2008_18_2_a7
ER  - 
%0 Journal Article
%A J. M. P�rez-Izquierdo 
%T Right Ideals in Non-Associative Universal Enveloping Algebras of Lie Triple Systems
%J Journal of Lie theory
%D 2008
%P 375-382
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a7/
%F JLT_2008_18_2_JLT_2008_18_2_a7
J. M. P�rez-Izquierdo . Right Ideals in Non-Associative Universal Enveloping Algebras of Lie Triple Systems. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 375-382. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a7/