Right Ideals in Non-Associative Universal Enveloping Algebras of Lie Triple Systems
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 375-382
Voir la notice de l'article provenant de la source Heldermann Verlag
We prove that the only proper right ideal of the universal enveloping algebra of a finite-dimensional central simple Lie triple system over a field of characteristic zero is its augmentation ideal. This provides new series of infinite-dimensional simple non-associative algebras strongly connected with Hopf algebras and geometry.
Classification :
17A40
Mots-clés : Lie triple systems, Sabinin algebras, universal enveloping algebras, nonassociative bialgebras
Mots-clés : Lie triple systems, Sabinin algebras, universal enveloping algebras, nonassociative bialgebras
@article{JLT_2008_18_2_JLT_2008_18_2_a7,
author = {J. M. P�rez-Izquierdo },
title = {Right {Ideals} in {Non-Associative} {Universal} {Enveloping} {Algebras} of {Lie} {Triple} {Systems}},
journal = {Journal of Lie theory},
pages = {375--382},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a7/}
}
TY - JOUR AU - J. M. P�rez-Izquierdo TI - Right Ideals in Non-Associative Universal Enveloping Algebras of Lie Triple Systems JO - Journal of Lie theory PY - 2008 SP - 375 EP - 382 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a7/ ID - JLT_2008_18_2_JLT_2008_18_2_a7 ER -
J. M. P�rez-Izquierdo . Right Ideals in Non-Associative Universal Enveloping Algebras of Lie Triple Systems. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 375-382. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a7/