On Filiform and 2-Filiform Leibniz Algebras of Maximum Length
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 335-35.

Voir la notice de l'article provenant de la source Heldermann Verlag

Leibniz algebras appear as a generalization of Lie algebras. The classification of naturally graded p-filiform Lie algebras is known. Several authors have studied the naturally graded p-filiform Leibniz algebras for any p with p ≥ 0.
Classification : 17A32, 17B30
Mots-clés : Leibniz algebras, naturally graded algebras
@article{JLT_2008_18_2_JLT_2008_18_2_a4,
     author = {J. M. Cabezas and L. M. Camacho and I. M. Rodr�guez },
     title = {On {Filiform} and {2-Filiform} {Leibniz} {Algebras} of {Maximum} {Length}},
     journal = {Journal of Lie theory},
     pages = {335--35},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a4/}
}
TY  - JOUR
AU  - J. M. Cabezas
AU  - L. M. Camacho
AU  - I. M. Rodr�guez 
TI  - On Filiform and 2-Filiform Leibniz Algebras of Maximum Length
JO  - Journal of Lie theory
PY  - 2008
SP  - 335
EP  - 35
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a4/
ID  - JLT_2008_18_2_JLT_2008_18_2_a4
ER  - 
%0 Journal Article
%A J. M. Cabezas
%A L. M. Camacho
%A I. M. Rodr�guez 
%T On Filiform and 2-Filiform Leibniz Algebras of Maximum Length
%J Journal of Lie theory
%D 2008
%P 335-35
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a4/
%F JLT_2008_18_2_JLT_2008_18_2_a4
J. M. Cabezas; L. M. Camacho; I. M. Rodr�guez . On Filiform and 2-Filiform Leibniz Algebras of Maximum Length. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 335-35. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a4/