A Converse to the Second Whitehead Lemma
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 295-299.

Voir la notice de l'article provenant de la source Heldermann Verlag

In this paper we state and prove the following version of a converse to the Second Whitehead Lemma: A finite-dimensional Lie algebra over a field of characteristic zero with vanishing second cohomology in any finite-dimensional module must be one of the following: (i) a one-dimensional algebra; (ii) a semisimple algebra; (iii) the direct sum of a semisimple algebra and a one-dimensional algebra.
Classification : 17B56
Mots-clés : Second Whitehead Lemma
@article{JLT_2008_18_2_JLT_2008_18_2_a2,
     author = {P. Zusmanovich },
     title = {A {Converse} to the {Second} {Whitehead} {Lemma}},
     journal = {Journal of Lie theory},
     pages = {295--299},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a2/}
}
TY  - JOUR
AU  - P. Zusmanovich 
TI  - A Converse to the Second Whitehead Lemma
JO  - Journal of Lie theory
PY  - 2008
SP  - 295
EP  - 299
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a2/
ID  - JLT_2008_18_2_JLT_2008_18_2_a2
ER  - 
%0 Journal Article
%A P. Zusmanovich 
%T A Converse to the Second Whitehead Lemma
%J Journal of Lie theory
%D 2008
%P 295-299
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a2/
%F JLT_2008_18_2_JLT_2008_18_2_a2
P. Zusmanovich . A Converse to the Second Whitehead Lemma. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 295-299. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a2/