A Converse to the Second Whitehead Lemma
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 295-299
Voir la notice de l'article provenant de la source Heldermann Verlag
In this paper we state and prove the following version of a converse to the Second Whitehead Lemma: A finite-dimensional Lie algebra over a field of characteristic zero with vanishing second cohomology in any finite-dimensional module must be one of the following: (i) a one-dimensional algebra; (ii) a semisimple algebra; (iii) the direct sum of a semisimple algebra and a one-dimensional algebra.
Classification :
17B56
Mots-clés : Second Whitehead Lemma
Mots-clés : Second Whitehead Lemma
@article{JLT_2008_18_2_JLT_2008_18_2_a2,
author = {P. Zusmanovich },
title = {A {Converse} to the {Second} {Whitehead} {Lemma}},
journal = {Journal of Lie theory},
pages = {295--299},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a2/}
}
P. Zusmanovich . A Converse to the Second Whitehead Lemma. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 295-299. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a2/