The Inverse Problem for Invariant Lagrangians on a Lie Group
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 471-502.

Voir la notice de l'article provenant de la source Heldermann Verlag

We discuss the problem of the existence of a regular invariant Lagrangian for a given system of invariant second-order ordinary differential equations on a Lie group, using approaches based on the Helmholtz conditions. Although we deal with the problem directly on the tangent manifold of the Lie group, our main result relies on a reduction of the system on the tangent manifold to a system on the Lie algebra of the Lie group. We conclude with some illustrative examples.
Classification : 22E30, 49N45, 53C22, 53C60, 70H03
Mots-clés : Euler-Poincare equations, inverse problem, Lagrangian system, Lie group, reduction, second-order ordinary differential equations
@article{JLT_2008_18_2_JLT_2008_18_2_a13,
     author = {M. Crampin and T. Mestdag },
     title = {The {Inverse} {Problem} for {Invariant} {Lagrangians} on a {Lie} {Group}},
     journal = {Journal of Lie theory},
     pages = {471--502},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a13/}
}
TY  - JOUR
AU  - M. Crampin
AU  - T. Mestdag 
TI  - The Inverse Problem for Invariant Lagrangians on a Lie Group
JO  - Journal of Lie theory
PY  - 2008
SP  - 471
EP  - 502
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a13/
ID  - JLT_2008_18_2_JLT_2008_18_2_a13
ER  - 
%0 Journal Article
%A M. Crampin
%A T. Mestdag 
%T The Inverse Problem for Invariant Lagrangians on a Lie Group
%J Journal of Lie theory
%D 2008
%P 471-502
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a13/
%F JLT_2008_18_2_JLT_2008_18_2_a13
M. Crampin; T. Mestdag . The Inverse Problem for Invariant Lagrangians on a Lie Group. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 471-502. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a13/