A Local-to-Global Principle for Convexity in Metric Spaces
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 445-469.

Voir la notice de l'article provenant de la source Heldermann Verlag

We introduce an extension of the standard Local-to-Global Principle used in the proof of the convexity theorems for the momentum map to handle closed maps that take values in a length metric space. As an application, this extension is used to study the convexity properties of the cylinder valued momentum map introduced by Condevaux, Dazord, and Molino.
Classification : 53C23, 53D20
Mots-clés : Length metric space, convexity, momentum map
@article{JLT_2008_18_2_JLT_2008_18_2_a12,
     author = {P. Birtea and J.-P. Ortega and T. S. Ratiu },
     title = {A {Local-to-Global} {Principle} for {Convexity} in {Metric} {Spaces}},
     journal = {Journal of Lie theory},
     pages = {445--469},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a12/}
}
TY  - JOUR
AU  - P. Birtea
AU  - J.-P. Ortega
AU  - T. S. Ratiu 
TI  - A Local-to-Global Principle for Convexity in Metric Spaces
JO  - Journal of Lie theory
PY  - 2008
SP  - 445
EP  - 469
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a12/
ID  - JLT_2008_18_2_JLT_2008_18_2_a12
ER  - 
%0 Journal Article
%A P. Birtea
%A J.-P. Ortega
%A T. S. Ratiu 
%T A Local-to-Global Principle for Convexity in Metric Spaces
%J Journal of Lie theory
%D 2008
%P 445-469
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a12/
%F JLT_2008_18_2_JLT_2008_18_2_a12
P. Birtea; J.-P. Ortega; T. S. Ratiu . A Local-to-Global Principle for Convexity in Metric Spaces. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 445-469. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a12/