A Local-to-Global Principle for Convexity in Metric Spaces
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 445-469
Voir la notice de l'article provenant de la source Heldermann Verlag
We introduce an extension of the standard Local-to-Global Principle used in the proof of the convexity theorems for the momentum map to handle closed maps that take values in a length metric space. As an application, this extension is used to study the convexity properties of the cylinder valued momentum map introduced by Condevaux, Dazord, and Molino.
Classification :
53C23, 53D20
Mots-clés : Length metric space, convexity, momentum map
Mots-clés : Length metric space, convexity, momentum map
@article{JLT_2008_18_2_JLT_2008_18_2_a12,
author = {P. Birtea and J.-P. Ortega and T. S. Ratiu },
title = {A {Local-to-Global} {Principle} for {Convexity} in {Metric} {Spaces}},
journal = {Journal of Lie theory},
pages = {445--469},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a12/}
}
TY - JOUR AU - P. Birtea AU - J.-P. Ortega AU - T. S. Ratiu TI - A Local-to-Global Principle for Convexity in Metric Spaces JO - Journal of Lie theory PY - 2008 SP - 445 EP - 469 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a12/ ID - JLT_2008_18_2_JLT_2008_18_2_a12 ER -
P. Birtea; J.-P. Ortega; T. S. Ratiu . A Local-to-Global Principle for Convexity in Metric Spaces. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 445-469. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a12/