Linear Maps Preserving Fibers
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 433-443
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $G\subset{\rm GL}(V)$ be a complex reductive group where $\dim V\infty$, and let $\pi\colon V\to V/G$ be the categorical quotient. Let ${\cal N}:=\pi^{-1}\pi(0)$ be the null cone of $V$, let $H_0$ be the subgroup of GL$(V)$ which preserves the ideal $\cal I$ of $\cal N$ and let $H$ be a Levi subgroup of $H_0$ containing $G$. We determine the identity component of $H$. In many cases we show that $H=H_0$. For adjoint representations we have $H = H_0$ and we determine $H$ completely. We also investigate the subgroup $G_F$ of GL$(V)$ preserving a fiber $F$ of $\pi$ when $V$ is an irreducible cofree $G$-module.
Classification :
20G20, 22E46, 22E60
Mots-clés : Invariants, null cone, cofree representations
Mots-clés : Invariants, null cone, cofree representations
@article{JLT_2008_18_2_JLT_2008_18_2_a11,
author = {G. W. Schwarz },
title = {Linear {Maps} {Preserving} {Fibers}},
journal = {Journal of Lie theory},
pages = {433--443},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a11/}
}
G. W. Schwarz . Linear Maps Preserving Fibers. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 433-443. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a11/