A Paley-Wiener Theorem for the Bessel Laplace Transform, I: the case SU(n,n)/SL(n,C) x R*+
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 253-271.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\C{{\Bbb C}} \def\R{{\Bbb R}} \def\q{{\frak q}} Let $\q$ be the tangent space to the noncompact causal symmetric space $$SU(n,n)/SL(n,\C)\times \R^*_+$$ at the origin. In this paper we give an explicit formula for the Bessel functions on $\q$. We use this result to prove a Paley-Wiener theorem for the Bessel Laplace transform on $\q$. Further, a flat analogue of the Abel transform is defined and inverted.
Classification : 43A85, 43A32, 33C80
Mots-clés : Non-compactly causal symmetric spaces, multivariable Bessel function, Paley-Wiener theorem, Abel transform
@article{JLT_2008_18_2_JLT_2008_18_2_a0,
     author = {S. Ben Sa�d },
     title = {A {Paley-Wiener} {Theorem} for the {Bessel} {Laplace} {Transform,} {I:} the case {SU(n,n)/SL(n,C)} x {R*\protect\textsubscript{+}}},
     journal = {Journal of Lie theory},
     pages = {253--271},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a0/}
}
TY  - JOUR
AU  - S. Ben Sa�d 
TI  - A Paley-Wiener Theorem for the Bessel Laplace Transform, I: the case SU(n,n)/SL(n,C) x R*+
JO  - Journal of Lie theory
PY  - 2008
SP  - 253
EP  - 271
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a0/
ID  - JLT_2008_18_2_JLT_2008_18_2_a0
ER  - 
%0 Journal Article
%A S. Ben Sa�d 
%T A Paley-Wiener Theorem for the Bessel Laplace Transform, I: the case SU(n,n)/SL(n,C) x R*+
%J Journal of Lie theory
%D 2008
%P 253-271
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a0/
%F JLT_2008_18_2_JLT_2008_18_2_a0
S. Ben Sa�d . A Paley-Wiener Theorem for the Bessel Laplace Transform, I: the case SU(n,n)/SL(n,C) x R*+. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 253-271. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a0/