A Paley-Wiener Theorem for the Bessel Laplace Transform, I: the case SU(n,n)/SL(n,C) x R*+
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 253-271
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\C{{\Bbb C}} \def\R{{\Bbb R}} \def\q{{\frak q}} Let $\q$ be the tangent space to the noncompact causal symmetric space $$SU(n,n)/SL(n,\C)\times \R^*_+$$ at the origin. In this paper we give an explicit formula for the Bessel functions on $\q$. We use this result to prove a Paley-Wiener theorem for the Bessel Laplace transform on $\q$. Further, a flat analogue of the Abel transform is defined and inverted.
Classification :
43A85, 43A32, 33C80
Mots-clés : Non-compactly causal symmetric spaces, multivariable Bessel function, Paley-Wiener theorem, Abel transform
Mots-clés : Non-compactly causal symmetric spaces, multivariable Bessel function, Paley-Wiener theorem, Abel transform
@article{JLT_2008_18_2_JLT_2008_18_2_a0,
author = {S. Ben Sa�d },
title = {A {Paley-Wiener} {Theorem} for the {Bessel} {Laplace} {Transform,} {I:} the case {SU(n,n)/SL(n,C)} x {R*\protect\textsubscript{+}}},
journal = {Journal of Lie theory},
pages = {253--271},
year = {2008},
volume = {18},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a0/}
}
TY - JOUR AU - S. Ben Sa�d TI - A Paley-Wiener Theorem for the Bessel Laplace Transform, I: the case SU(n,n)/SL(n,C) x R*+ JO - Journal of Lie theory PY - 2008 SP - 253 EP - 271 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a0/ ID - JLT_2008_18_2_JLT_2008_18_2_a0 ER -
S. Ben Sa�d . A Paley-Wiener Theorem for the Bessel Laplace Transform, I: the case SU(n,n)/SL(n,C) x R*+. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 253-271. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a0/