Braided Lie Bialgebras Associated to Kac-Moody Algebras
Journal of Lie theory, Tome 18 (2008) no. 1, pp. 125-14.

Voir la notice de l'article provenant de la source Heldermann Verlag

Braided-Lie bialgebras have been introduced by Majid, as the Lie versions of Hopf algebras in braided categories. In this paper we extend previous work of Majid and of ours to show that there is a braided-Lie bialgebra associated to each inclusion of Kac-Moody bialgebras. Doing so, we obtain many new examples of infinite-dimensional braided-Lie bialgebras. We analyze further the case of untwisted affine Kac-Moody bialgebras associated to finite-dimensional simple Lie algebras. The inclusion we study is that of the finite-type algebra in the affine algebra. This braided-Lie bialgebra is isomorphic to the current algebra over the simple Lie algebra, now equipped with a braided cobracket. We give explicit expressions for this braided cobracket for the simple Lie algebra sl3.
Classification : 17B67, 17B62, 22E67
Mots-clés : Kac-Moody algebra, braided Lie bialgebra
@article{JLT_2008_18_1_JLT_2008_18_1_a7,
     author = {J. E. Grabowski },
     title = {Braided {Lie} {Bialgebras} {Associated} to {Kac-Moody} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {125--14},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a7/}
}
TY  - JOUR
AU  - J. E. Grabowski 
TI  - Braided Lie Bialgebras Associated to Kac-Moody Algebras
JO  - Journal of Lie theory
PY  - 2008
SP  - 125
EP  - 14
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a7/
ID  - JLT_2008_18_1_JLT_2008_18_1_a7
ER  - 
%0 Journal Article
%A J. E. Grabowski 
%T Braided Lie Bialgebras Associated to Kac-Moody Algebras
%J Journal of Lie theory
%D 2008
%P 125-14
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a7/
%F JLT_2008_18_1_JLT_2008_18_1_a7
J. E. Grabowski . Braided Lie Bialgebras Associated to Kac-Moody Algebras. Journal of Lie theory, Tome 18 (2008) no. 1, pp. 125-14. http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a7/