Transvection and Differential Invariants of Parametrized Curves
Journal of Lie theory, Tome 18 (2008) no. 1, pp. 93-123.

Voir la notice de l'article provenant de la source Heldermann Verlag

We describe an sl2 representation in the space of differential invariants of parametrized curves in homogeneous spaces. The representation is described by three operators, one of them being the total derivative D. We use this representation to find a basis for the space of differential invariants of curves in a complement of the image of D, and so generated by transvection. These are natural representatives of first cohomology classes in the invariant bicomplex. We describe algorithms to find these basis and study most well-known geometries.
Classification : 13A50, 53A55
Mots-clés : Transvectant, differential invariants, curves, affine manifold, symmetric manifold
@article{JLT_2008_18_1_JLT_2008_18_1_a6,
     author = {G. Mar� Beffa and J. A. Sanders },
     title = {Transvection and {Differential} {Invariants} of {Parametrized} {Curves}},
     journal = {Journal of Lie theory},
     pages = {93--123},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a6/}
}
TY  - JOUR
AU  - G. Mar� Beffa
AU  - J. A. Sanders 
TI  - Transvection and Differential Invariants of Parametrized Curves
JO  - Journal of Lie theory
PY  - 2008
SP  - 93
EP  - 123
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a6/
ID  - JLT_2008_18_1_JLT_2008_18_1_a6
ER  - 
%0 Journal Article
%A G. Mar� Beffa
%A J. A. Sanders 
%T Transvection and Differential Invariants of Parametrized Curves
%J Journal of Lie theory
%D 2008
%P 93-123
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a6/
%F JLT_2008_18_1_JLT_2008_18_1_a6
G. Mar� Beffa; J. A. Sanders . Transvection and Differential Invariants of Parametrized Curves. Journal of Lie theory, Tome 18 (2008) no. 1, pp. 93-123. http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a6/