A Simple Proof of the Algebraic Version of a Conjecture by Vogan
Journal of Lie theory, Tome 18 (2008) no. 1, pp. 83-91.

Voir la notice de l'article provenant de la source Heldermann Verlag

D. Vogan ["Unitary representations and complex analysis", Notes from the Cime summer school, Venice, Italy 2004] conjectured that four canonical globalizations of Harish-Chandra modules commute with certain n-cohomology groups. In this article we prove that Vogan's conjecture holds for one of the globalizations if and only if it holds for the dual. Using a previously published result of one of the authors, which establishes the conjecture for the minimal globalization, we can therefore deduce Vogan's conjecture for the maximal globalization.
Classification : 22E46
Mots-clés : Representations of reductive Lie groups, n-homology groups, globalizations of Harish-Chandra modules
@article{JLT_2008_18_1_JLT_2008_18_1_a5,
     author = {T. Bratten and S. Corti },
     title = {A {Simple} {Proof} of the {Algebraic} {Version} of a {Conjecture} by {Vogan}},
     journal = {Journal of Lie theory},
     pages = {83--91},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a5/}
}
TY  - JOUR
AU  - T. Bratten
AU  - S. Corti 
TI  - A Simple Proof of the Algebraic Version of a Conjecture by Vogan
JO  - Journal of Lie theory
PY  - 2008
SP  - 83
EP  - 91
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a5/
ID  - JLT_2008_18_1_JLT_2008_18_1_a5
ER  - 
%0 Journal Article
%A T. Bratten
%A S. Corti 
%T A Simple Proof of the Algebraic Version of a Conjecture by Vogan
%J Journal of Lie theory
%D 2008
%P 83-91
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a5/
%F JLT_2008_18_1_JLT_2008_18_1_a5
T. Bratten; S. Corti . A Simple Proof of the Algebraic Version of a Conjecture by Vogan. Journal of Lie theory, Tome 18 (2008) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a5/