Borel Subalgebras of Root-Reductive Lie Algebras
Journal of Lie theory, Tome 18 (2008) no. 1, pp. 215-241.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\l{{\frak l}} \def\o{{\frak o}} \def\s{{\frak s}} This paper generalizes the classification of I. Dimitrov and I. Penkov [{\it Borel subalgebras of $\g\l(\infty)$}, Resenhas 6 (2004) 153--163] of Borel subalgebras of $\g\l_\infty$. Root-reductive Lie algebras are direct limits of finite-dimensional reductive Lie algebras along inclusions preserving the root spaces with respect to nested Cartan subalgebras. A Borel subalgebra of a root-reductive Lie algebra is by definition a maximal locally solvable subalgebra. The main general result of this paper is that a Borel subalgebra of an infinite-dimensional indecomposable root-reductive Lie algebra is the simultaneous stabilizer of a certain type of generalized flag in each of the standard representations. \par For the three infinite-dimensional simple root-reductive Lie algebras more precise results are obtained. The map sending a maximal closed (isotropic) generalized flag in the standard representation to its stabilizer hits Borel subalgebras, yielding a bijection in the cases of $\s\l_\infty$ and $\s\p_\infty$; in the case of $\s\o_\infty$ the fibers are of size one and two. A description is given of a nice class of toral subalgebras contained in any Borel subalgebra. Finally, certain Borel subalgebras of a general root-reductive Lie algebra are seen to correspond bijectively with Borel subalgebras of the commutator subalgebra, which are understood in terms of the special cases.
Classification : 17B65, 17B30, 17B05
Mots-clés : Locally finite Lie algebra, root-reductive Lie algebra, Borel subalgebra, maximal locally solvable subalgebra
@article{JLT_2008_18_1_JLT_2008_18_1_a13,
     author = {E. Dan-Cohen },
     title = {Borel {Subalgebras} of {Root-Reductive} {Lie} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {215--241},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a13/}
}
TY  - JOUR
AU  - E. Dan-Cohen 
TI  - Borel Subalgebras of Root-Reductive Lie Algebras
JO  - Journal of Lie theory
PY  - 2008
SP  - 215
EP  - 241
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a13/
ID  - JLT_2008_18_1_JLT_2008_18_1_a13
ER  - 
%0 Journal Article
%A E. Dan-Cohen 
%T Borel Subalgebras of Root-Reductive Lie Algebras
%J Journal of Lie theory
%D 2008
%P 215-241
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a13/
%F JLT_2008_18_1_JLT_2008_18_1_a13
E. Dan-Cohen . Borel Subalgebras of Root-Reductive Lie Algebras. Journal of Lie theory, Tome 18 (2008) no. 1, pp. 215-241. http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a13/