A Generalization of Helling-Kim-Mennicke Groups and Manifolds
Journal of Lie theory, Tome 17 (2007) no. 4, pp. 857-867
Voir la notice de l'article provenant de la source Heldermann Verlag
We construct an infinite family of closed connected orientable 3-manifolds by pairwise identifications of faces in the boundary of certain polyhedral 3-cells. We determine geometric presentations (that is, induced by Heegaard diagrams of the constructed manifolds) of the fundamental group, and study the split extension of it. Then we prove that these manifolds are n-fold cyclic coverings of the 3-sphere branched over some pretzel links. Our results generalize those of Helling, Kim and Mennicke [Comm. in Algebra 23 (1995) 5169--5206] and Cavicchioli and Paoluzzi [Manuscripta Math. 101 (2000) 457--494] on cyclic branched coverings of the Whitehead link, and their fundamental groups.
Classification :
57M12, 57M25, 53C30, 20F05, 20F34, 57M50, 57N10
Mots-clés : 3-manifolds, group presentations, spines, orbifolds, polyhedral schemata, branched coverings, hyperbolic structure
Mots-clés : 3-manifolds, group presentations, spines, orbifolds, polyhedral schemata, branched coverings, hyperbolic structure
@article{JLT_2007_17_4_JLT_2007_17_4_a6,
author = {E. Barbieri and A. Cavicchioli and F. Spaggiari },
title = {A {Generalization} of {Helling-Kim-Mennicke} {Groups} and {Manifolds}},
journal = {Journal of Lie theory},
pages = {857--867},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2007},
url = {http://geodesic.mathdoc.fr/item/JLT_2007_17_4_JLT_2007_17_4_a6/}
}
TY - JOUR AU - E. Barbieri AU - A. Cavicchioli AU - F. Spaggiari TI - A Generalization of Helling-Kim-Mennicke Groups and Manifolds JO - Journal of Lie theory PY - 2007 SP - 857 EP - 867 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2007_17_4_JLT_2007_17_4_a6/ ID - JLT_2007_17_4_JLT_2007_17_4_a6 ER -
E. Barbieri; A. Cavicchioli; F. Spaggiari . A Generalization of Helling-Kim-Mennicke Groups and Manifolds. Journal of Lie theory, Tome 17 (2007) no. 4, pp. 857-867. http://geodesic.mathdoc.fr/item/JLT_2007_17_4_JLT_2007_17_4_a6/