Spin Holonomy Algebras of Self-Dual 4-Forms in R8
Journal of Lie theory, Tome 17 (2007) no. 4, pp. 829-856
Voir la notice de l'article provenant de la source Heldermann Verlag
We give a complete classification of spin holonomy algebras on eight-dimensional Euclidean spaces w.r.t. a linear spin connection constructed from a self-dual 4-form T with constant coefficients. An important role in this classification is played by the set of spinors fixed by T, which is the algebraic model for the set of parallel spinors w.r.t. the spin connection.
Classification :
53C10, 53C27, 53C29
Mots-clés : Spin connection, spin holonomy algebra
Mots-clés : Spin connection, spin holonomy algebra
@article{JLT_2007_17_4_JLT_2007_17_4_a5,
author = {N. Bernhardt and P.-A. Nagy },
title = {Spin {Holonomy} {Algebras} of {Self-Dual} {4-Forms} in {R\protect\textsuperscript{8}}},
journal = {Journal of Lie theory},
pages = {829--856},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2007},
url = {http://geodesic.mathdoc.fr/item/JLT_2007_17_4_JLT_2007_17_4_a5/}
}
N. Bernhardt; P.-A. Nagy . Spin Holonomy Algebras of Self-Dual 4-Forms in R8. Journal of Lie theory, Tome 17 (2007) no. 4, pp. 829-856. http://geodesic.mathdoc.fr/item/JLT_2007_17_4_JLT_2007_17_4_a5/