Analyticity of Riemannian Exponential Maps on Diff(T)
Journal of Lie theory, Tome 17 (2007) no. 3, pp. 481-503
Voir la notice de l'article provenant de la source Heldermann Verlag
We study the exponential maps induced by Sobolev type right-invariant (weak) Riemannian metrics of order k (greater or equal to 1) on the Lie group of smooth, orientation preserving diffeomorphisms of the circle. We prove that each of them defines an analytic Fr�chet chart of the identity.
Classification :
22E65, 58B20, 17B68
Mots-clés : Group of diffeomorphisms, Riemannian exponential map, Camassa-Holm equation
Mots-clés : Group of diffeomorphisms, Riemannian exponential map, Camassa-Holm equation
@article{JLT_2007_17_3_JLT_2007_17_3_a2,
author = {T. Kappeler and E. Loubet and P. Topalov },
title = {Analyticity of {Riemannian} {Exponential} {Maps} on {Diff(T)}},
journal = {Journal of Lie theory},
pages = {481--503},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2007},
url = {http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a2/}
}
TY - JOUR AU - T. Kappeler AU - E. Loubet AU - P. Topalov TI - Analyticity of Riemannian Exponential Maps on Diff(T) JO - Journal of Lie theory PY - 2007 SP - 481 EP - 503 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a2/ ID - JLT_2007_17_3_JLT_2007_17_3_a2 ER -
T. Kappeler; E. Loubet; P. Topalov . Analyticity of Riemannian Exponential Maps on Diff(T). Journal of Lie theory, Tome 17 (2007) no. 3, pp. 481-503. http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a2/