Analyticity of Riemannian Exponential Maps on Diff(T)
Journal of Lie theory, Tome 17 (2007) no. 3, pp. 481-503.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the exponential maps induced by Sobolev type right-invariant (weak) Riemannian metrics of order k (greater or equal to 1) on the Lie group of smooth, orientation preserving diffeomorphisms of the circle. We prove that each of them defines an analytic Fr�chet chart of the identity.
Classification : 22E65, 58B20, 17B68
Mots-clés : Group of diffeomorphisms, Riemannian exponential map, Camassa-Holm equation
@article{JLT_2007_17_3_JLT_2007_17_3_a2,
     author = {T. Kappeler and E. Loubet and P. Topalov },
     title = {Analyticity of {Riemannian} {Exponential} {Maps} on {Diff(T)}},
     journal = {Journal of Lie theory},
     pages = {481--503},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2007},
     url = {http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a2/}
}
TY  - JOUR
AU  - T. Kappeler
AU  - E. Loubet
AU  - P. Topalov 
TI  - Analyticity of Riemannian Exponential Maps on Diff(T)
JO  - Journal of Lie theory
PY  - 2007
SP  - 481
EP  - 503
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a2/
ID  - JLT_2007_17_3_JLT_2007_17_3_a2
ER  - 
%0 Journal Article
%A T. Kappeler
%A E. Loubet
%A P. Topalov 
%T Analyticity of Riemannian Exponential Maps on Diff(T)
%J Journal of Lie theory
%D 2007
%P 481-503
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a2/
%F JLT_2007_17_3_JLT_2007_17_3_a2
T. Kappeler; E. Loubet; P. Topalov . Analyticity of Riemannian Exponential Maps on Diff(T). Journal of Lie theory, Tome 17 (2007) no. 3, pp. 481-503. http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a2/