On Compact Just-Non-Lie Groups
Journal of Lie theory, Tome 17 (2007) no. 3, pp. 625-632.

Voir la notice de l'article provenant de la source Heldermann Verlag

A compact group is called a compact Just-Non-Lie group or a compact JNL group if it is not a Lie group but all of its proper Hausdorff quotient groups are Lie groups. We show that a compact JNL group is profinite and a compact nilpotent JNL group is the additive group of p-adic integers for some prime. Examples show that this fails for compact pronilpotent and solvable groups.
Classification : 22C05, 20E22, 20E34
Mots-clés : Compact just-non-Lie groups, centerfree compact groups
@article{JLT_2007_17_3_JLT_2007_17_3_a12,
     author = {F. Russo },
     title = {On {Compact} {Just-Non-Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {625--632},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2007},
     url = {http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a12/}
}
TY  - JOUR
AU  - F. Russo 
TI  - On Compact Just-Non-Lie Groups
JO  - Journal of Lie theory
PY  - 2007
SP  - 625
EP  - 632
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a12/
ID  - JLT_2007_17_3_JLT_2007_17_3_a12
ER  - 
%0 Journal Article
%A F. Russo 
%T On Compact Just-Non-Lie Groups
%J Journal of Lie theory
%D 2007
%P 625-632
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a12/
%F JLT_2007_17_3_JLT_2007_17_3_a12
F. Russo . On Compact Just-Non-Lie Groups. Journal of Lie theory, Tome 17 (2007) no. 3, pp. 625-632. http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a12/