On Compact Just-Non-Lie Groups
Journal of Lie theory, Tome 17 (2007) no. 3, pp. 625-632
Cet article a éte moissonné depuis la source Heldermann Verlag
A compact group is called a compact Just-Non-Lie group or a compact JNL group if it is not a Lie group but all of its proper Hausdorff quotient groups are Lie groups. We show that a compact JNL group is profinite and a compact nilpotent JNL group is the additive group of p-adic integers for some prime. Examples show that this fails for compact pronilpotent and solvable groups.
Classification :
22C05, 20E22, 20E34
Mots-clés : Compact just-non-Lie groups, centerfree compact groups
Mots-clés : Compact just-non-Lie groups, centerfree compact groups
@article{JLT_2007_17_3_JLT_2007_17_3_a12,
author = {F. Russo },
title = {On {Compact} {Just-Non-Lie} {Groups}},
journal = {Journal of Lie theory},
pages = {625--632},
year = {2007},
volume = {17},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a12/}
}
F. Russo . On Compact Just-Non-Lie Groups. Journal of Lie theory, Tome 17 (2007) no. 3, pp. 625-632. http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a12/