An Asymptotic Result on the A-Component in the Iwasawa Decomposition
Journal of Lie theory, Tome 17 (2007) no. 3, pp. 469-479
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $G$ be a connected noncompact semisimple Lie group. For each $v', v, g\in G$, we prove that $$\lim_{t\to \infty} [a(v'g^tv)]^{1/t} = s^{-1} \cdot b(g),$$ where $a(g)$ denotes the $a$-component in the Iwasawa decomposition of $g = kan$ and $b(g)\in A_+$ denotes the unique element that is conjugate to the hyperbolic component $h$ in the complete multiplicative Jordan decomposition of $g = ehu$. The element $s$ in the Weyl group of $(G,A)$ is determined by $yv\in G$ (not unique in general) in such a way that $yv\in N^-m_sMAN$, where $yhy^{-1}=b(g)$ and $G = \cup_{s\in W} N^- m_sMAN$ is the Bruhat decomposition of $G$.
Classification :
22E46, 22E30
Mots-clés : Iwasawa decomposition, complete multiplicative Jordan decomposition, Bruhat decomposition, a-component
Mots-clés : Iwasawa decomposition, complete multiplicative Jordan decomposition, Bruhat decomposition, a-component
@article{JLT_2007_17_3_JLT_2007_17_3_a1,
author = {H. Huang and T.-Y. Tam },
title = {An {Asymptotic} {Result} on the {A-Component} in the {Iwasawa} {Decomposition}},
journal = {Journal of Lie theory},
pages = {469--479},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2007},
url = {http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a1/}
}
TY - JOUR AU - H. Huang AU - T.-Y. Tam TI - An Asymptotic Result on the A-Component in the Iwasawa Decomposition JO - Journal of Lie theory PY - 2007 SP - 469 EP - 479 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a1/ ID - JLT_2007_17_3_JLT_2007_17_3_a1 ER -
H. Huang; T.-Y. Tam . An Asymptotic Result on the A-Component in the Iwasawa Decomposition. Journal of Lie theory, Tome 17 (2007) no. 3, pp. 469-479. http://geodesic.mathdoc.fr/item/JLT_2007_17_3_JLT_2007_17_3_a1/